

SCHOOL OF ARTIFICIAL INTELLIGENCE AND ROBOTICS

M.Sc. Artificial Intelligence and Machine Learning

Scheme and Syllabi in OBE Framework from 2021 Admission onwards (Based on CSS 2020 Regulations)

> Submitted on May 2022

Vision

School of Artificial Intelligence and Robotics envisions to emerge as a premier academic institution of excellence that innovates for a better future of the nation, through teaching, learning and research.

Mission

- **4** To nurture holistic graduates equipped with leadership and technology skills to address global technological challenges by means of innovative solutions.
- **4** To develop global capabilities in Artificial Intelligence and Robotics for industrial and scientific solutions.
- **4** To focus on training, research and consultancy that will gear up for Artificial Intelligence, Machine Learning, Robotics and Advanced Data Analytics.

SCHOOL OF ARTIFICIAL INTELLIGENCE AND ROBOTICS

SCHEME 2021

Programme: M.Sc. Artificial Intelligence and Machine LearningFaculty: Technology and Applied SciencesDuration: 4 SemestersMinimu

Minimum Total Credits Required: 84

Semester wise List of Courses

Semester I

Course Code	Course Title	Hours	s/Week	Credits		
Course Code	Course The	L	Т	Р	Creans	
AI M 21 C11	Artificial Intelligence: Principles and Techniques	3	2	2	4	
AI M 21 C12	Mathematical Foundations for AI	3	2	1	4	
AI M 21 C13	Machine Learning	3	2	2	4	
AI M 21 C14	Algorithms and Complexity	3	2	1	4	
AI M 21 E1*	Elective- I	3	1	2	3	
AI M 21 C16	Machine Learning Lab	-	2	6	2	
Total Credits (Sem	Total Credits (Semester I)					

Semester II

AI M 21 C21	Digital Image Processing	3	2	3	4
AI M 21 C22	Applied Statistics	3	2	1	4
AI M 21 C23	Deep Learning	3	2	-	4
AI M 21 C24	Fuzzy Logic and Nature Inspired Computing	3	2	2	4
AI M 21 E2*	Elective - II	3	1	2	3
AI M 21 C26	Deep Learning Lab	-	2	6	2
Total Credits (Seme	21				

Semester III

AI M 21 C31	Computer Vision	3	2	-	4
AI M 21 C32	Data Science and Analytics	3	2	-	4
AI M 21 E3*	Elective - III	3	1	2	3
AI M 21 E3*	Elective - IV	3	1	2	3
AI M 21 C35	Computer Vision and Data Analytics Lab	-	2	6	2
AI M 21 C36	Major Project Phase I	-	2	2	2
	Open Course	3	1	2	4
Total Credits (Seme	22				

Semester IV

AI M 21 C41	Major Project Phase II and Comprehensive Viva-voce	One Semester	20
Total Credits (Seme	l Credits (Semester IV)		20

Total Credits for the M.Sc. Programme : 84

ELECTIVE COURSES

Course Code	Course Title		s/Week		Credits
Course Coue	Course The	L	Т	Р	Creans
AI M 21 E11	Operating Systems and Virtualization	3	1	2	3
AI M 21 E12	Cyber Physical Systems	3	1	2	3
AI M 21 E13	Distributed Computing	3	1	2	3
AI M 21 E21	Advanced Computer Architecture and Parallel Programming	3	1	2	3
AI M 21 E22	Cyber Security and Cyber Laws	3 1 2		2	3
AI M 21 E23	Internet of Things and Block Chain Technologies	3	1	2	3
AI M 21 E31	Reinforcement Learning	3	1	2	3
AI M 21 E32	Natural Language Processing	3	1	2	3
AI M 21 E33	AI in Bioinformatics	3 1 2		2	3
AI M 21 E34	Introduction to Robotics	3 1 2		2	3
AI M 21 E35	Big Data Analytics	3	3 1 2		3
AI M 21 E36	Cloud Computing	3	1	2	3

Graduate Attributes of Mahatma Gandhi University

Critical Thinking and	Capability to analyse, evaluate and interpret evidence,
Analytical	arguments, claims, beliefs on the basis of empirical evidence;
Reasoning	reflect relevant implications to the reality; formulate logical
	arguments; critically evaluate practices, policies and theories to
	develop knowledge and understanding; able to envisage the
	reflective thought to the implication on the society.
Scientific Reasoning and	Ability to analyse, discuss, interpret and draw conclusions from
Problem Solving	quantitative/qualitative data and experimental evidences; and
	critically evaluate ideas, evidence and experiences from an
	unprejudiced and reasoned perspective; capacity to extrapolate
	from what one has learned and apply their competencies to
	solve problems and contextualise into research and apply one's
	learning to real life situations.
Multidisciplinary/	Acquire interdisciplinary /multidisciplinary/ transdisciplinary
Interdisciplinary/	knowledge base as a consequence of the learning they engage
Transdisciplinary Approach	with their programme of study; develop a collaborative
	multidisciplinary/ interdisciplinary/transdisciplinary- approach
	for formulate constructive arguments and rational analysis for
	achieving common goals and objectives.
Intra and Interpersonal	Ability to work effectively and respectfully with diverse teams;
Skills	facilitate collaborative and coordinated effort on the part of a
	group, and act together as a group or a team in the interests of
	a common cause and work efficiently as a member of a team;
	lead the team to guide people to the right destination, in a
	smooth and efficient way.
Digital literacy	Capability to use ICT in a variety of learning situations,
	demonstrate ability to access, choose, collect and evaluate, and
	use a variety of relevant information sources; structure and
	evaluate those data for decision making.
Global Citizenship	Building a sense of belonging to a common humanity and to
	become responsible and active global citizens. Appreciation
	and adaptation of different sociocultural setting.
Social Competency	Possess knowledge of the values and beliefs of multiple
	cultures, appreciate and adapt to a global perspective; and
	capability to effectively engage in a multicultural society and
	interact respectfully, manage and lead with diverse groups.

Programme Specific Outcomes (PSO)

PSO1	Critical Thinking and Evaluation Capability to critically evaluate ideas, evidence and experiences from an unprejudiced and reasoned perspective;				
PSO2	Scientific Analysis and Reasoning Ability to analyse, discuss, interpret and draw conclusions from quantitative/ qualitative data and experimental evidences;				
PSO3	Problem Solving Capacity to extrapolate and apply their knowledge and competencies to solve problems and contextualise into research and develop relevant software solutions to real life problems.				
PSO4	Multidisciplinary/Interdisciplinary/Transdisciplinary Approach Ability to acquire knowledge and formulate solutions in interdisciplinary/ multidisciplinary/transdisciplinary levels of problem solving in a collaborative environment.				
PSO5	Communication Skills Ability to document, present and demonstrate ideas and complex problem solutions in a very clear and effective way with the aid of appropriate tools.				
PSO6	Leadership Skills Ability to work effectively and lead respectfully with diverse teams, formulating a goal in a smooth and efficient way.				
PSO7	Social Consciousness and Responsibility Ability to evolve as a socially committed and responsible scientist/software professional meeting global demands and able to appreciate equity, inclusiveness and sustainability.				
PSO8	Moral and Ethical Reasoning Capable of demonstrating the ability to identify ethical issues related to software development and use ethical practices in all phases of software development/deployment and research and embrace moral/ethical values in conducting one's life.				
PSO9	Networking and Collaboration Acquire skills to be able to collaborate and network with scholars in an educational/, professional/research/industry organizations and individuals in India and abroad.				
PSO10	Lifelong Learning Ability to acquire knowledge and skills through self-paced and self-directed learning and adapt to changing trends and demands of work place through knowledge/skill updation/reskilling.				

AIM 21 C11 ARTIFICIAL INTELLIGENCE: PRINCIPLES AND TECHNIQUES

School Name	School of Artifici	School of Artificial Intelligence and Robotics					
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Artificial Intellige	ence: Princ	iples and Te	echniques			
Type of Course	Core						
Course Code	AI M21 C11						
Names of	Dr. Ivy Prathap, I	Ph.D.					
Academic Staff							
& Qualifications							
Course	Today, the amoun		-	•			
Summary &	far outpaces hu	-		-		-	
Justification	decisions based o			-			
	computer learnin	-		-		aking. This	
	course aims to int			•			
	of-the-art techniq	ues and ap	plications of	t artificial in	itelligence.		
Semester	Ι						
Total Student							
Learning	Learning	Lecture	Tutorial	Practical	Others	Total	
Time(SLT)	Approach					Learning	
						Hours	
	Explicit	42	28	28			
	Teaching						
						120	
	Seminar,						
	Assignments 22						
	etc.						
Duo uoguisito	Paging of Data St		d Algorithe				
Pre-requisite	Basics of Data St	ructures an	u Aigorithn	18			
COURSE OUTCO	DMES (CO)						

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand fundamentals of Artificial Intelligence and	U, An	1, 2, 10

AIM 21 C11 ARTIFICIAL INTELLIGENCE: PRINCIPLES AND TECHNIQUES

	expert systems		
2	Elucidate state space and searching strategies	E, An, A	1, 2
3	Analyze various types of standard search algorithms	A, An	1,2
4	Illustrate advanced search techniques and algorithms	U, A, An,	1,2,3
	like mini-max for game playing.	Е	
5	Examine Knowledge representation and predicate logic	U, A	1,2
6	Investigate the role of agents and how it is related to environment and the way of evaluating it and how agents can act by establishing goals.	E, A, S	1,2
7	Apply artificial intelligence concepts in real life problems	U, A, C, E	1,2,10
*Rem((S)	ember (R), Understand (U), Apply (A), Analyse (An), Evalu	uate (E), Creat	e (C), Skill

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	10	1,2
2	Unit II	24	3,4
3	Unit III	20	4,5
4	Unit IV	16	6
5	Unit V	14	7

COURSE CONTENT Content for Classroom Transaction

Unit I (14 hours)

Introduction to Artificial Intelligence: Definition of AI; Future of AI; Brief Discussion of Major Topics (Expert System, Natural Language Processing, Speech and Pattern Recognitionetc.) of AI. Problem definition as a State Space Search, Production System, Control Strategies, Problem Characteristics.

AIM 21 C11 ARTIFICIAL INTELLIGENCE: PRINCIPLES AND TECHNIQUES

UNIT II (24 hours)

Types of search algorithms: Formal vs. Informal search: Breadth First Search, Depth First Search, iterative deepening, uniform cost search, Hill climbing and its Variations, simulated annealing, genetic algorithm search; Heuristics Search Techniques; Best First Search, A* algorithm, AO* algorithm, Alpha – Beta pruning, Constraint Satisfaction Problem, Means- End Analysis. Game playing; Game trees, Mini-max algorithm.

UNIT III (22 hours)

Game playing - Knowledge representation, Knowledge representation using Predicate logic, Introduction to predicate calculus, Resolution, Use of predicate calculus, Knowledge representation using other logic-Structured representation of knowledge.

UNIT IV (20 hours)

Architecture for Intelligent Agents – Agent communication – Negotiation and Bargaining – Argumentation among Agents – Trust and Reputation in Multi-agent systems.

UNIT V (14 hours)

AI applications – Language Models – Information Retrieval- Information Extraction – Natural Language Processing – Machine Translation – Speech Recognition – Robot – Hardware – Perception – Planning – Moving.

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,					
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	• Internal Tests – Minimum two (Extended answers)					
	• Seminar –					
	 Research Literature review 					
	 Report writing 					
	 Presentation 					
	• Assignments – Written, Oral presentation and viva					
	Case study					

AIM 21 C11 ARTIFICIAL INTELLIGENCE: PRINCIPLES AND TECHNIQUES

B. Semester End Examination

REFERENCES

- 1. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edition, Pearson Education, 2015.
- 2. Elaine Rich and Kelvin Knight, Artificial Intelligence, 3rd edition, Tata McGraw Hill, 2017.
- 3. Richard E. Neapolitan, Xia Jiang, Artificial Intelligence With an Introduction to Machine Learning, Chapman & Hall CRC, 2018.
- 4. M. Tim Jones, —Artificial Intelligence: A Systems Approach (Computer Science)^{II}, Jones and Bartlett Publishers, Inc., First Edition, 2008.
- 5. Nils J. Nilsson, —The Quest for Artificial Intelligence, Cambridge University Press, 2009.

Approval Date	
Version	
Approval by	
Implementation Date	
Implementation Date	

AI M 21 C12 MATHEMATICAL FOUNDATIONS FOR AI

School	Name	School of Artificial In	telligence	and Rol	ootics		
Progra	mme	M.Sc. Artificial Intelligence and Machine Learning					
Course	e Name	Mathematical Foundations for AI					
Type of	f Course	Core					
Course	Code	AI M 21 C12					
Names	of	Dr. Sharon Susan Jaco	Dr. Sharon Susan Jacob,				
	nic Staff lifications	M.Tech., Ph.D.					
Course Summa Justific Semest Total S Learnin (SLT)	ary & cation er	Various tools of machine learning are having a rich mathematical theory. Therefore, in order to develop new algorithms of machine/deep learning, it is necessary to have knowledge of all such mathematical concepts. This course introduces these basic mathematical concepts related to the machine/deep learning. In particular, the course focus on the three main branches of mathematics such as Linear algebra, calculus, and Probability those are having strong linkage with machine learning. So the students will learn the basic mathematical concepts required to understand and develop machine learning algorithms.ILearning ApproachLectureTutor ialPrac ticalOthers Total Learnin					
		Explicit Teaching Seminar, Assignments, etc.	42	28	14	36	g Ник 120
Pre-rec	quisite	Good knowledge in Mathematics					
-		MES (CO)			<u>.</u>		
CO No.	Expected	Course Outcome				Learning Domains	PSO No.
1	Understan	tand and apply mathematical concepts				U, A	1,2,3

required to develop efficient machine learning

AI M 21 C12 MATHEMATICAL FOUNDATIONS FOR AI

	algorithms.		
2	Outline the concepts of linear algebra	U, R	1,2
3	Find the relationship between the vectors by the help of vector algebra	An	2,3
4	Prioritize the components of a matrix with the help of Eigen values & eigen vectors	A, U, An	1,2
5	Describe the role of local-global maxima & minima Gradient algorithms optimization	U, An	1,3
6	Articulate the concept and derivation of gradients	U, A	1,2
7	Apply Baye's theorem	A, U, An	1,3
8	Build some of the basic machine learning applications	S, C	2,3,10
*Ren	nember(R), Understand(U), Apply(A), Analyse(An), Evalue	ate(E),Create(C),Skill
(S)			
CO	URSE CONTENT		

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	16	1,3
2	Unit II	14	2
3	Unit III	20	4
4	Unit IV	17	5,6
5	Unit V	17	7,8

AI M 21 C12 MATHEMATICAL FOUNDATIONS FOR AI

COURSE CONTENT Content for Classroom Transaction

Unit I (16hrs)

Vectors and its operations, cosine similarity, orthogonal vectors. Review of vector norms, Vector space and basis, Spanning sets, Linear independence, Bases and Dimension.

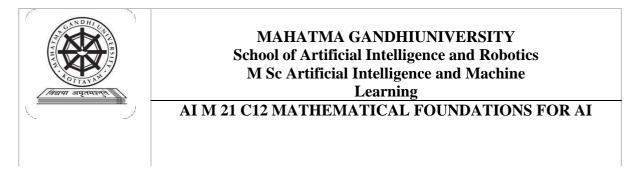
Unit II (14hrs)

Matrices, Hadamard product, linear transformation, identity matrix, invertible matrix and inverse, rank, Type of matrices- symmetric, diagonal, orthogonal, orthonormal, positive definite matrix.

Unit III (20hrs)

Calculus – Review of Functions, Rules of differentiation, Partial derivatives, Gradient concept, intuition properties, directional derivative.

Unit IV (17hrs)


Vector and matrix calculus, Eigen values & eigenvectors, Jacobian Gradient algorithms, local-global maxima and minima, saddle point, convex functions, gradient descent algorithms- batch, mini-batch, stochastic.

Unit V (17hrs)

Probability - Basic rules and axioms, events, sample space, frequentist approach, dependent and independent events, conditional probability, Random variables- continuous and discrete, expectation, variance.

Distributions- joint and conditional, Bayes' Theorem, Distributions- binomial, bernoulli, gaussian. Basics of Information theory- entropy, cross-entropy, mutual information

Teaching and	Classroom Procedure (Mode of transaction)	
Learning	Direct Instruction: Brainstorming lecture, Explicit Teaching, E-	
Approach	learning, Interactive Instruction: Active co-operative learning,	
	Seminar, Group Assignments	
	Authentic learning: Library work and Group discussion, Presentation by	
	individual student/Group representative.	

Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment(CIA)			
	• Internal Tests–Minimum two (Extended answers/Practical)			
	• Seminar –			
	 Research Literature review 			
	 Report writing 			
	 Presentation 			
	• Assignments–Written, Practical, Oral presentation and viva			
	Case study/Mini project			
	B. Semester End Examination			

REFERENCES

- 1. Axler, Sheldon. Linear Algebra Done Right. Springer, 2014.
- 2. Deisenroth, Marc Peter, et al. Mathematics for Machine Learning. Cambridge University Press, 2020.
- 3. Härdle, Wolfgang Karl, and Léopold Simar. Applied Multivariate Statistical Analysis. Springer, 2015.
- 4. Morin, David. Probability. Createspace Independent Publishing Platform, 2016.

Approval Date	
Version	
Approval by	
Implementation Date	

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

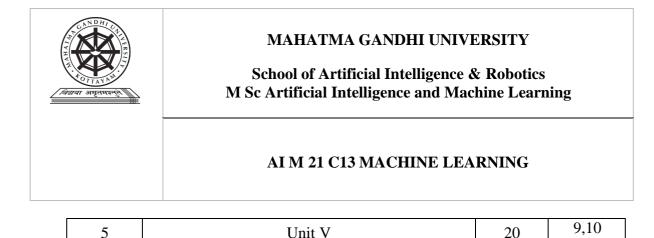
AI M 21 C13 MACHINE LEARNING

School Name	School of Artit	School of Artificial Intelligence & Robotics				
Programme	M.Sc. Artificia	M.Sc. Artificial Intelligence and Machine Learning				
Course Name	Machine Learr	ning				
Type of Course	Core	Core				
Course Code	AI M 21 C13					
Names of	Ms. Jissy Liz J	ose, M.Te	ch.			
Academic Staff						
& Qualifications						
Course	This course provides an introduction to the fundamentals of machine					
Summary &	learning. It covers theoretical foundations as well as essential algorithms					
Justification	for supervised	d and un	supervised	l learning.	The stude	nts will be
	acquainted wit	h the desig	gn and imp	lementation	of efficient	machine
	learning algori	thms to so	lve various	s real-life pr	oblems.	
Semester	Ι					
Total						
StudentLearning	Learning	Lecture	Tutorial	Practical	Others	Total
Time (SLT)	Approach					Learning
						Hours
	Explicit					
	Teaching	42	28	28		
						120
	Seminar,				22	
	Assignments				22	
	etc.					
Pre-requisite	Mathematical	Foundation	ne Drogra r	nming and	Algorithma	
r re-requisite	wanematical		ns, Fiografi	ming, and	Aigoriums	

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the concept of machine learning and its	U, A	1,2
	applications.		
2	Differentiate various learning approaches and	U, A, An	1,2,3
	familiarize with challenges and applications of machine		

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning


AI M 21 C13 MACHINE LEARNING

	learning.		
3	Understand and apply the Bayesian method.	U, A, An	1,2
4	Understand and analyse the concepts and techniques for	U, An	1,2,3,7
	prediction and classification.		
5	Understand and apply the concept of linear regression,	U, An, A,	1,2,3
	gradient descent and logistic regression.	С	
6	Apply the concept of regularization in linear and logistic	U, An, A	1,2
	regression.		
7	Understand and compare various dimensionality	U, An, A, E	1,2,3
	reduction techniques.		
8	Understand the theoretical foundations and illustrate the	U, A, An,	1,2,3
	working of classifier models like SVM, Neural	Е	
	Networks, Decision trees etc.		
9	Illustrate and apply clustering algorithms and identify its	U, A, An	1,2,3
	applicability in real life problems.		
10	Design and implement efficient algorithms to solve	U, A, An,	1,2,3,4,6,
	various real-life problems by applying various machine	S,C, E	7,10
	learning approaches and presenting the approach		
	effectively with appropriate tools.		
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	uate (E), Creat	e (C), Skill
(S)			

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	16	1,2,3
2	Unit II	20	4,5,10
3	Unit III	20	6,7
4	Unit IV	22	4,8,10

COURSE CONTENT Content for Classroom Transaction

Unit I (16 hours)

Introduction: Concept of Machine Learning, Types of Machine Learning, Challenges of Machine Learning, Applications of Machine Learning, Statistical Learning: Bayesian Method, The Naive Bayes Classifier.

Unit II (20 hours)

Linear Regression: Prediction using Linear Regression, Gradient Descent, Linear Regression with one Variable, Linear Regression with Multiple Variables, Polynomial Regression, Feature Scaling/Selection.

Logistic Regression: Classification using Logistic Regression, Logistic Regression vs. Linear Regression, Logistic Regression with one Variable and with Multiple Variables.

Unit III (20 hours)

Regularization: Regularization and its Utility: The problem of Overfitting, Application of Regularization in Linear and Logistic Regression, Regularization and Bias/Variance.

Data Pre-Processing Techniques, Feature Generation, Selection and Dimensionality Reduction - Subset selection, Principal Component Analysis, Cross validation and re- sampling methods.

Unit IV (22 hours)

Classification by Decision Trees, K-Nearest Neighbour Classifier, Support Vector Machines, Classification by back propagation, Ensemble Learning, Measuring Classifier Performance

Unit V (20 hours)

Unsupervised Learning - Clustering Methods - K-means, Expectation-Maximization Algorithm, Hierarchical Clustering Methods, Density based clustering.

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C13 MACHINE LEARNING

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction: Explicit Teaching, E-learning			
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group			
	Assignments			
	Authentic learning: Library work and Group discussion, Presentation by			
	individual student/Group representative.			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	• Internal Tests – Minimum two (Extended answers)			
	• Seminar –			
	 Research Literature review 			
	 Report writing 			
	 Presentation 			
	• Assignments – Written, Oral presentation and viva.			
	 Case study 			
	B. Semester End Examination			

REFERENCES

- 1. Ethem Alpaydin, "Introduction to Machine Learning", 4th Edition, The MIT Press.
- 2. Tom M. Mitchell, "Machine Learning", 1st Edition, Tata McGraw-Hill Education.
- 3. Sergios Theodoridis, Aggelos Pikrakis, Konstantinos Koutroumbas, Dionisis Cavouras, Introduction to Pattern Recognition: A MATLAB Approach, Academic Press, First Edition.
- 4. Sergios Theodoridis, Konstantinos Koutroumbas, Pattern Recognition, Academic Press.
- 5. Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, Wiley India, Second Edition.
- 6. V. Susheela Devi, M. Narasimha Murty, Pattern Recognition: An Introduction, University Press, Hyderabad.
- 7. Bishop C.M., Pattern Recognition and Machine Learning, Springer.
- 8. Mevin P. Murphy, "Machine Learning: A Probabilistic Perspective", The MIT Press.
- 9. Yegnanarayana B, Artificial Neural Networks, Prentice-HallIndia Pvt.Ltd.

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C13 MACHINE LEARNING

Approval Date	
Version	
Approval by	
Implementation Date	

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C14 ALGORITHMS AND COMPLEXITY

School Name	School of Artificial Intelligence & Robotics					
Programme	M.Sc. Artificia	M.Sc. Artificial Intelligence and Machine Learning				
Course Name	Algorithms an	d Complex	tity			
Type of Course	Core					
Course Code	AI M 21 C14					
Names of	Dr. Anuj Moha	amed, MC	A, Ph. D.			
Academic Staff						
& Qualifications						
Course	This course p	provides k	nowledge	of techniq	ues to desi	gn efficient
Summary &	algorithms to	solve vario	ous types o	of problems	and to mak	e evaluative
Justification	judgments abo	out the algo	orithms. It	also covers	techniques	to establish
	the efficiency	of the desi	gned algo	rithms. It als	so provides	concepts of
	NP-completen	ess and to	evaluate al	gorithms ac	cordingly.	
Semester	Ι					
Total Student						
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total
(SLT)	Approach					Learning Hours
						Hours
	Explicit	42	28	14		
	Teaching	42	28	14		120
	Seminar,					120
	Assignments				36	
	etc.				50	
Pre-requisite	Design and A	nalysis of	Algorithr	ns, Data St	ructures, Pi	ogramming
	Skills					

COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Analyse a given algorithm and express its time and space complexities in asymptotic notations.	U, An	1,2

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C14 ALGORITHMS AND COMPLEXITY

2	Solve recurrence equations using different methods.	А	2
3	Describe various techniques for deriving good lower	U, A, E	2,4
	bounds		
4	Compute the lower bound on the time of an algorithm	A, E	2
5	Understand and apply the concepts of randomized	U, A, An	1,2
	algorithms and string-matching algorithms.		
6	Describe computational models for parallel algorithms	U	1,4
7	Implement parallel algorithms for suitable applications	An, C	2
8	Understand concepts of NP-completeness and evaluate	U, An, E	1,2,8
	algorithms accordingly		
9	Distinguish between problems that can be solved by a	U, An, E	1,2
	polynomial time algorithm and problems for which no		
	polynomial time algorithm is known		
10	Apply approximation algorithms to generate feasible	U, A	1,2
	solutions for NP-hard problems.		
11	Design algorithms to solve real-life problems, analyze	U, An,	1,2,3,4,7,
	its complexity and present the approach in an effective	C,E,S	8,10
	way with the aid of appropriate tools.		
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	ate (E), Creat	te (C), Skill
(S)			

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	17	1,2,11
2	Unit II	15	3,4,11
3	Unit III	19	5,11
4	Unit IV	15	6,7,11
5	Unit V	18	8,9,10,11

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C14 ALGORITHMS AND COMPLEXITY

COURSE CONTENT Content for Classroom Transaction

Unit I (17 hrs.)

Introduction: The Role of Algorithms in Computing, Performance Analysis- Time and Space Complexity, Asymptotic Notations, Best, worst and average case complexities, Running time comparisons, Mathematical Background for Algorithm Analysis, Recurrences: Substitution Method, Recursion-Tree Method, Master Method.

Unit II (15 hrs.)

Lower Bound Theory: Importance of Lower Bound Theory, Comparison Trees, Adversary Arguments, Lower Bounds through Reductions.

Unit III (19 hrs.)

Randomized Algorithms: Motivation, Applications and Advantages, Monte Carlo and Las Vegas Algorithms, De-Randomization.

String Matching Algorithms: The Naive String-Matching Algorithm, The Rabin-Karp Algorithm, String Matching with Finite Automata, The Knuthmorris-Pratt Algorithm, Longest Common Subsequence.

Unit IV (15 hrs.)

Parallel Algorithms: Sequential vs. Parallel Algorithms; Models: Data Parallel Model, Task Graph Model, Work Pool Model, Master Slave Model, Producer Consumer or Pipeline Model; Hybrid Model; Speedup and Efficiency; Examples of Parallel Algorithms: Parallel Sorting, Parallel Matrix Chain Multiplication.

Unit V (18 hrs.)

Introduction to NP-Completeness: The class P and NP, NP-Complete, NP-Hard, NP-Completeness and Reducibility; Cook's Theorem. Approximation Algorithms: Absolute Approximations, C-Approximations, Polynomial Time and Fully Polynomial Time Approximation Schemes. Vertex Cover Problem, Traveling-Salesman Problem.

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C14 ALGORITHMS AND COMPLEXITY

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction: Explicit Teaching, E-learning			
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group			
	Assignments			
	Authentic learning: Library work and Group discussion, Presentation by			
	individual student/Group representative.			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	• Internal Tests – Minimum two (Extended answers)			
	• Seminar –			
	 Research Literature review 			
	 Report writing 			
	 Presentation 			
	• Assignments – Written, Oral presentation and viva.			
	• Case study			
	B. Semester End Examination			

REFERENCES

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Prentice Hall India, Third Edition.

2. G. Brassard, P. Bratley, Fundamentals of Algorithms, PHI.

3. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajeshekharan, Computer Algorithms/C++, Second Edition, Universities Press.

4. A. Levitin, Introduction to Design and Analysis of Algorithms, Pearson.

5. Basu S.K., Design Methods and Analysis of Algorithms, Prentice Hall, Second Edition.

6. A. Bhargava, Grokking Algorithms: An illustrated guide for programmers and other curious people, Manning Publications.

7. A. Basheer, M. Zaghlool, FPGA-Based High Performance Parallel Computing, Scholars' Press.

8. Richard Neapolitan, Kumars Naimipour, Foundations of Algorithms, Jones and Barlett Publishers, Canada, Fourth Edition.

9. Sara Base Allen Van Gelder, Computer Algorithms: Introduction to Design and Analysis, Pearson Education Asia.

School of Artificial Intelligence & Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 C14 ALGORITHMS AND COMPLEXITY

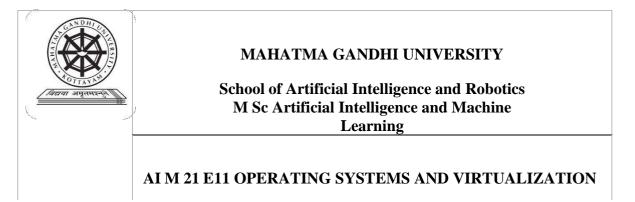
10. Prabhakar Gupta, Vineet Agarwal, Manish Varshney, Design and Analysis of Algorithms, Prentice Hall India, Second Edition.

Approval Date	
Version	
Approval by	
11 V	
Implementation Date	

School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 E11 OPERATING SYSTEMS AND VIRTUALIZATION

School Name	School of Artificial In	telligence	e & Robo	tics		
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Operating Systems an	0			e	
Course Manie	Operating Systems an	u viituaii	Zation			
Type of Course	Elective					
Course Code	AI M 21 E11					
Names of	Prof. Dr. Bindu V R,	M.Sc., Ph	.D.			
Academic Staff						
&Qualifications						
Course	The course provides		-			
Summary	of operating system d	-	-		-	
&Justification	issues and current d			-	-	1 0
	systems. The students	-	-		-	
	and implementation of				Ũ	•
	e	students will also get a deep understanding of various types of				
	virtualization techniques, theiradvantages and disadvantages, in order					
	to be able to apply them in a practical setting. For illustrating the concepts, four operating systems have been chosen as case studies.					
		ng syster	ns have b	been chos	sen as cas	se studies.
Semester	I					
Total Student						
Learning Time	Learning Approach	Lectur	Tutori	Practi	Other	Total
(SLT)		e	al	cal	S	Learning
						Hours
	Explicit Teaching	42	14	28		
	Saminan				26	
	Seminar,				36	100
	Assignment, case					120
D ' '	Study etc.					
Pre-requisite	Overview of Compute	-	-		stem–Pro	ocesses,
	Memory, Scheduling, Input/Output and Files					



School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 E11 OPERATING SYSTEMS AND VIRTUALIZATION

COURSE OUTCOMES (CO)

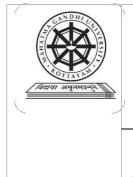
CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Analyse the key design areas that have been instrumental in the development to modern operating systems	U, An	1
2	Elucidate OS design issues raised by the introduction of Multiprocessor and multicore organization.	An	1,2
3	Compare and analyse the structure, functional elements and features of Windows, Traditional and Modern UNIX, Linux and Android operating systems.	An	1,2,4
4	Critically examine the requirements for process control by the OS and analyse the issues involved in the Execution of OS code.	A, An	1,2
5	Develop programs implementing multithreading.	U,A	1,2,3,4
6	Compare and analyse the process and thread management, concurrency and synchronization methods and the virtual memory management mechanisms in UNIX, Linux, Solaris, Windows and Android operating systems.	R, U, An	1,2
7	Identify and analyse the key design issues in multiprocessor thread scheduling and some of the key approaches to scheduling and understand the Requirements imposed by real-time scheduling.	An	1,2,3
8	Analyse and compare the scheduling methods used in Linux, UNIX SVR4, and Windows10.	U,An	1,2
9	Critically examine some of the key issues in the design Of OS support for I/O and describe the I/O mechanisms in UNIX, Linux, and Windows.	U,An	1,2
10	Define and discuss virtual machines and virtualization and conceptualize and implement the various approaches To virtualization.	U,A,An	1,2,3

11	Conceptualize, formulate and design a sample operating			
	system and document, present and demonstrate concepts	U,A,An,C,	1,2,3,5,6,	
	in a very clear and effective way with the aid of	Е	10	
	appropriate tools.			
*Remen	Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill			
(S)				

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
	Unit I		
1		12	1,2,3
	Unit II		
2		20	4,5,6,11
	Unit III		7011
3		16	7,8,11
	Unit IV		
4		16	9,11
	Unit V		
5		20	10,11


COURSE CONTENT Content for Classroom Transaction

Unit I (12hrs)

Introduction - Characteristics of Modern Operating Systems, Symmetric Multiprocessing and Micro- kernels, Virtual Machines, OS Design Considerations for Multiprocessor and Multicore, Windows Overview, Modern UNIX Systems, Linux, Android.

Unit II (20hrs)

Processes and Threads- Process Description and Control, Security issues, UNIXSVR4 Process Management, Threads, Windows Process and Thread Management, Solaris Thread and SMP Management, Linux Process and Thread Management, Android Process and Thread

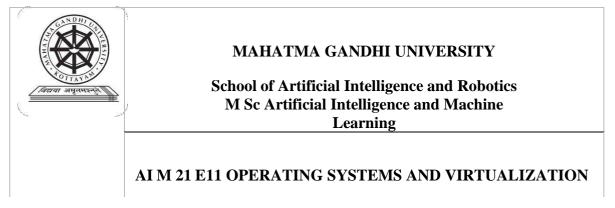
School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 E11 OPERATING SYSTEMS AND VIRTUALIZATION

Management Unix Concurrency Mechanisms, Linux Kernel Concurrency Mechanisms, Solaris Thread Synchronization Primitives, Windows Concurrency Mechanisms, Android Interprocess Communication.

Unit III (16hrs)

Memory- UNIX and Solaris Memory Management, Linux Memory Management, Windows Memory Management, Android Memory Management.

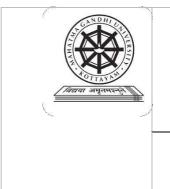

Scheduling-Traditional UNIX Scheduling, Multiprocessor and Multicore Scheduling, Realtime Scheduling, Linux Scheduling, UNIXSVR4 Scheduling, Windows Scheduling.

Unit IV (16hrs)

Input / Output and Files - UNIX SVR4 I/O, Linux I/O, Windows I/O, Unix File Management, Linux Virtual File Systems, Windows File System, Android File Management.

Unit V (20hrs) Virtualization Concepts: Introduction to Virtual machines; Process Virtual Machines, System Virtual Machines, Multiprocessor Virtualization, Applications for VM Technology Approaches toVirtualization: Hypervisors, Containers, Processor Issue, Memory Management, I/OManagement, VMware ESXi, Microsoft Hyper-V and Xen Variants, Java VM, Linux V ServerVirtual Machine Architecture, Android Virtual Machine.

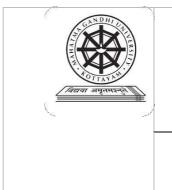
Teaching and	Classroom Procedure (Mode of transaction)
Learning	Direct Instruction: Brain storming lecture, Explicit
Approach	Teaching, E-learning, Interactive Instruction: Active co-operative
	learning, Seminar, Group Assignments,
	Authentic learning: Library work and Group discussion, Presentation by
	individual student/Group representative



Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	Internal Tests–Minimum Two					
	(Extendedanswers/Practical)					
	• Seminar –					
	 Research Literature Review 					
	 Report Writing 					
	 Presentation 					
	Assignment–Written, Practical, Oral Presentation and					
	Viva					
	Case study/Mini project					
	B. Semester End Examination					

REFERENCES

- 1. William Stallings, Operating Systems: Internals and Design Principles, 9th Ed, Prentice-Hall.
- 2. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Concepts, 8th Ed, John Wiley.
- 3. James E. Smith, Ravi Nair, Virtual Machines-Versatile Platforms for Systems and Processes, Morgan Kaufmann Publishers.
- 4. Matthew Portnoy, Virtualization- Essentials, John Wiley & Sons, Inc.


Approval Date	
Version	
Approval by	
Implementation Date	

School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

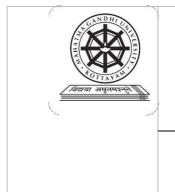
AI M 21 E12 CYBER PHYSICAL SYSTEMS

School Name	School of Artificial Intelligence & Robotics						
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Cyber Physical Systems						
Type of Course	Elective	Elective					
Course Code	AI M 21 E12						
Names of Academic Staff & Qualifications	Dr. Abdul Jabl	oar P, MPh	iil, PhD				
Course Summary & Justification	Physical Syste harvesting, van the concepts, p abstractions, s Systems. It off develop new i	The course aims to familiarise with fundamental concepts of Cyber Physical Systems (CPS). The main topics covered in this course are data harvesting, various CPS controls and challenges. The students will get the concepts, principles, and applications of CPS so that they can do abstractions, modelling, design, and analysis of Cyber Physical Systems. It offers students an opportunity to appreciate those concepts, develop new insights and methods, and turn them into practical problem-solving and modelling.					
Semester	Ι						
Total StudentLearning Time (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours	
	Explicit Teaching 42 14 28 120 Seminar,						
D	Assignments etc.				36		
Pre-requisite	Fundamental o	of Network	ıng				

School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 E12 CYBER PHYSICAL SYSTEMS

COURSE OUTCOMES (CO)


CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Familiarise the fundamental concepts of Cyber Physical	R, U, A	1,2,6
	Systems (CPS)		
2	Understand and analyse various CPS Control	U, A, An	1,2
3	Understand and analyse various data harvesting methods	U, An, S, E	1,2
4	Analyse and evaluate Industrial CPS	An,C,E	1,2,3
5	Manage security, reliability and programming	A,C,An,E	1,2,3
	challenges in CPS		
6	Formulate and evaluate reliable Cyber system to	A, S, C, E	1,2,3,6,7
	manage data and communication		
7	Apply, design and create Cyber Physical System and	U,A,An, C,	1,2,3,4,6,
	analyse its performance	S	7,8,10
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	iate (E), Creat	e (C), Skill
(S)			

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	15	1,7
2	Unit II	20	2,7
3	Unit III	15	3,7
4	Unit IV	20	4,7
5	Unit V	14	5,6,7

COURSE CONTENT Content for Classroom Transaction

School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning

AI M 21 E12 CYBER PHYSICAL SYSTEMS

UNIT I - (15 hrs)

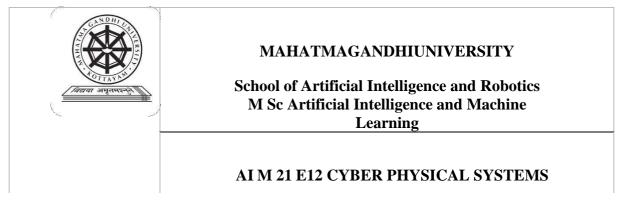
Introduction to Cyber Physical Systems (CPS); Characteristics of CPS, CPS Domains, Cross-Domain Analysis, Adaptive control in CPS.

UNIT II (20 hrs)

Distributed Consensus control for wireless CPS, Communication channels of multi agent system, Consensus control, Interaction control theory, Distributed control, Adaptive Quantization, Transmission length.

UNIT III (15 hrs)

Online control and optimization of CPS, Framework, Intelligent Personal Assistant (IPA), Data harvesting problems, Direct RF energy harvesting, Relayed RF energy harvesting.

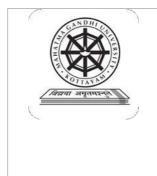

UNIT IV - (20 hrs)

Industrial CPS, Communication in 5G Mobile Tele-Systems (MTS), Challenges and research trends, Network architecture for Machine-Type-Communication (MTC), Random Access (RA) for MTC.

UNIT V - (14 hrs)

Data reliability challenges, Network wide programming challenges, CPS and human action, Security and privacy of CPS, Validation, Verification and formal methods of CPS.

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction: Explicit Teaching, E-learning			
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group Assignments Authentic learning: Library work and Group discussion, Presentation by individual student/Group representative.			
Assessment	Mode of Assessment			
Types	A. Continuous Internal Assessment (CIA)			
	• Internal Tests – Minimum two (Extended answers)			
	• Seminar –			



	 Research Literature review
	 Report writing
	 Presentation
	• Assignments – Written, Oral presentation and viva.
	• Case study
В	. Semester End Examination

REFERENCES

- 1. Danda B. Rawat, Sabina Jeschke, Christian Brecher, Cyber-Physical Systems Foundations, Principles and Applications, Elsevier Science.
- 2. Glenn A. Fink, Sabina Jeschke, Security and Privacy in Cyber-Physical Systems Foundations, Principles, and Applications, Wiley.
- 3. Walid M. Taha, Abd-Elhamid M. Taha, Johan Thunberg, Cyber-Physical Systems: A Model-Based Approach, Springer International Publishing.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E13 DISTRIBUTED COMPUTING

School Name	School of Artificial Intelligence & Robotics						
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Distributed Com	Distributed Computing					
Type of Course	Elective	Elective					
Course Code	AI M 21 E13						
Names of	Dr. Ivy Prathap,	Ph.D.					
Academic Staff							
& Qualifications							
Course	Distributed syste	ms consist	of a collecti	on of indepe	endent con	nputers that	
Summary &	appears to its us	sers as a si	ingle coher	ent system.	This cour	rse aims to	
Justification	discuss some of	the basic p	rinciples be	ehind distrib	outed syste	ems, review	
	main paradigms	used to orga	anize them	and an intro	duction to	distributed	
	programming en	vironment.					
Semester	Ι						
Total Student							
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total	
(SLT)	Approach					Learning Hours	
	Explicit	42	14	28		Hours	
	Teaching	12	11	20			
	Teaching					120	
	Seminar,						
	Assignments						
	etc.						
Pre-requisite	Basics of Comp	uter Netwo	rks	<u> </u>	<u> </u>	<u> </u>	

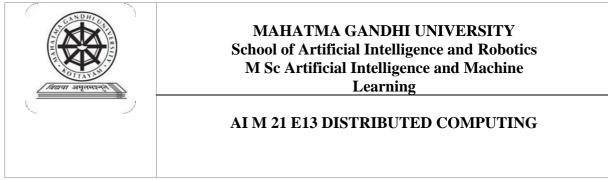
COURSE OUTCOMES (CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand fundamentals of Distributed Systems	U, A, An	1,2,10

Andrew Subdanted		MAHATMA GANDHI UN School of Artificial Intelligence M Sc Artificial Intelligence : Learning AI M 21 E13 DISTRIBUTED	e and Robotic and Machine	
2	Elucidate Con	Elucidate Communication between Distributed Objects U, E, A, An 1,2,3,4		
3	Analyze Co-o	rdination and Agreement	U, An, E	1,2,9,10
4	Illustrate Con Transactions	Illustrate Concurrency Control in DistributedA, An, E1,2,9,10		
5	Elucidate dist	Elucidate distributed programming environments U, E, An, R 1,2,7,9,10		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)				

COURSE CONTENT Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	10	1
2	Unit II	24	2
3	Unit III	20	3
4	Unit IV	16	4
5	Unit V	14	5


COURSE CONTENT

Content for Classroom Transaction

Unit I (10 hours)

Characterization of distributed systems: Introduction, Examples of Distributed Systems, Resource sharing and the Web, Challenges, Architectural models, Fundamental models, Networking issues.

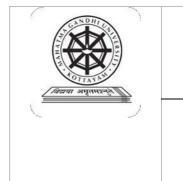
UNIT II (24 hours)

Distributed Objects and Remote Invocation: Communication between Distributed Objects, Remote Procedure Call, Remote Method Invocation, Request Reply Protocol.

UNIT III (20 hours)

Overview of Clocks, Events and Process States, Synchronizing Physical Clocks, Logical time and Logical clocks-Coordination and Agreement: Overview of Distributed Mutual Exclusion-Central Server Algorithm and Ring-Based Algorithm, Elections-Ring based Election Algorithm.

UNIT IV (16 hours)


Distributed Transactions: Flat and Nested Distributed Transactions, Atomic Commit protocols, Concurrency Control in Distributed Transactions, Distributed Deadlocks, Transaction Recovery.

UNIT V (14 hours)

Distributed Shared Memory- Check pointing and Rollback Recovery- Consensus and Agreement- Failure Detectors- Distributed file servers- Distributed programming environments-Communication primitives, selected case studies.

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group
	Assignments
	Authentic learning: Library work and Group discussion, Presentation by
	individual student/Group representative.
Assessment	Mode of Assessment
Types	A. Continuous Internal Assessment (CIA)
	• Internal Tests – Minimum two (Extended answers)
	• Seminar –
	 Research Literature review
	 Report writing
	 Presentation
	• Assignments – Written, Oral presentation and viva
	• Case study
	B. Semester End Examination

REFERENCES

AI M 21 E13 DISTRIBUTED COMPUTING

1. George Coulouris, Jean Dollimore, Tim Kindberg, Distributed Systems: Concepts and Design, Pearson Education Asia, 5th Edition.

AI M 21 E13 DISTRIBUTED COMPUTING

- 2. Tanenbaum Andrew S. and Steen Maarten Van, Distributed Systems: Principles and Paradigms, 2nd Edition.
- 3. Sukumar.Ghosh, "Distributed Systems", Chapman & Hall/CRC, Taylor & Francis Group, 2010.
- 4. Hagit Attiya, Jennifer Welch, "Distributed Computing: Fundamentals, Simulations, and Advanced Topics ", Wiley Publications.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C16 MACHINE LEARNING LAB

School Name	School of Arti	School of Artificial Intelligence & Robotics				
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Machine Learn	Machine Learning Lab				
Type of Course	Core					
Course Code	AI M 21 C16					
Names of	Ms. Jissy Liz J	ose				
Academic Staff	M.Tech.					
& Qualifications						
Course	The course p	rovides a	n insight	into the fu	Indamentals	of Python
Summary &	programming	for Machi	ne Learnir	ng and Artif	ficial Intellig	gence based
Justification	applications.	The studen	nts will b	e acquainte	d with the	design and
	implementatio	n of essent	ial mathem	natical opera	tions, effici	ent machine
	learning algorithm	ithms and	AI based	applications	to solve	
	various real-lif	various real-life problems.				
Semester	Ι	Ι				
Total Student						
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total
(SLT)	Approach					Learning
						Hours
	Explicit					
	Teaching		28	84		
						120
	Seminar,					
	Assignments				8	
	etc.					
Pre-requisite	Mathematical	Foundation	ns, Progran	nming, and	Algorithms	

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Familiarise with concepts in Python programming	U, A	1,2
	and write, test and debug Python programs.		
2	Familiarise with built in functions, modules and	U, A, An	1,2

MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning AI M 21 C16 MACHINE LEARNING LAB			ootics ine
	packages in Python and effectively use the various machine learning tools.		
3	Understand the mathematical and statistical perspectives of machine learning algorithms through python programming.	U, A, An	1,2,3
4	Implement dimensionality reduction techniques, linear and logistic regression, clustering and classification algorithms and analyze its performance	U, A, An, C, E	1,2,3,6,7
5	5 Design and develop solutions for formal and informal search problems and Game playing algorithms in AI.		1,2,3,6,7
*Reme (S)	mber (R), Understand (U), Apply (A), Analyse (An), I	Evaluate (E), C	reate (C), Skill

COURSE CONTENT Content for Classroom Transaction

Practice Python programming and implement various algorithms in Artificial intelligence, Mathematics, and Machine learning. Programs from the following areas are to be at least covered in the lab: Familiarization of Python Programming, Python packages- numpy, scipy, pandas, mathplotlib etc., Implementation of Vector operations, Matrix operations, Calculus, Regression techniques, Dimensionality Reduction techniques, Classification and Clustering algorithms, Formal and Informal search techniques in AI and Game playing algorithms in AI.

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Explicit Teaching, E-learning, Active co-operative learning, Inquiry- based
Approach	instruction, Authentic learning, Library work and Group discussions.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Technical skills evaluation - Correctness of programs
	Assignments -Lab Records, Practical and Viva
	Internal Test
	• Case study

AI M 21 C16 MACHINE LEARNING LAB

REFERENCES

- 1. Tony Gadis, Starting out with python, 2ndedition Pearson Publications.
- 2. Peter Norton, Alex Samuel, David Aitel, Beginning Python, wrox publications
- 3. Andreas Muller and Sarah Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly,2016.
- 4. Deisenroth, Marc Peter, et al. Mathematics for Machine Learning. Cambridge University Press, 2020.
- 5. S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,3rd edition, Pearson Education, 2015.
- 6. Ethem Alpaydin, "Introduction to Machine Learning", 4th Edition, The MIT Press.
- 7. Tom M. Mitchell, "Machine Learning", 1st Edition, Tata McGraw-Hill Education.
- 8. Bishop C.M., Pattern Recognition and Machine Learning, Springer.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C21 DIGITAL IMAGE PROCESSING

School Name	School of Artificial I	ntelligence	e and Rob	otics		
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Digital Image Proces	Digital Image Processing				
Type of Course	Core					
Course Code	AIM 21 C21					
Names of	Prof. Dr. Bindu V R,	M. Sc., P	h. D.			
Academic Staff						
& Qualifications						
Course	The course provides	a thorough	n discussio	on on the	fundame	ntals ofdigital
Summary &	image processing, 1	relating th	nese to co	ontempor	ary tech	nologies and
Justification	applications. The stu	dents will	get a deep	understa	unding of	digital image
	processing operations and can implement these operations practically					
	through programming. They will also be made capable of applying this					
	knowledge for practical applications.					
Semester	II					
Total Student						
LearningTime	Learning Approach	Lecture	Tutori	Practi	Others	Total
(SLT)			al	cal		Learning
						Hours
	Explicit Teaching	42	28	42		
	Seminar,				8	
	Assignment,				-	120
	case Study etc.					
Pre-requisite	Overview of Computer System and basic mathematics.					

COURSE OUTCOMES

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Define the elements of image processing and differentiate color image models in image representation.	U, An	1,2,10

AI M 21 C21 DIGITAL IMAGE PROCESSING

	and frequency domain image transformations and filtering techniques.		
3	Analyse and compare various image enhancement Techniques.	An	1,2
4	Illustrate histogram processing on an image.	A, An	1,2
5	Analyse and compare various image restoration techniques.	An	1,2,3
6	Illustrate different morphological operations on an Image.	A, An	1,2,3
7	Analyse and compare various image segmentation techniques.	An	1,2,3
8	Illustrate segmentation of an image.	A, An	2,3
9	Develop programs implementing the different image processing operations on sample images and illustrate	U, A	1,2
10	Discuss image recognition techniques.	U, An	1,2
11	Analyse and compare the methods for image compression.	An	1,2,3
12	Discuss, analyse and compare the latest technologies and issues in Digital Image Processing. mber (R), Understand (U), Apply (A), Analyse (Ar	U, An, A, C, E	1,2,10

COURSE CONTENT

Content for Classroom transaction

Unit	Course description	Hrs	CO No.
1	Unit I	20	1

AI M 21 C21 DIGITAL IMAGE PROCESSING

2	Unit II	22	2,12
3	Unit III	24	2,3,4,5,12
4	Unit IV	24	6,7,8,10,12
5	Unit V	22	9,11,12

COURSE CONTENT

Content for Classroom Transaction

Unit 1 (23 hrs)

Elements of digital image processing systems, Elements of visual perception, psycho visual model, brightness, contrast, hue, saturation, mach band effect, Color image fundamentals - RGB,HSI models, Image acquisition and sampling, Quantization, Image file formats, Two-dimensional convolution, correlation, and frequency responses.

Unit II (23 hrs)

Image Transforms- 1D DFT, 2D transforms – DFT, DCT, Discrete Sine, Walsh, Hadamard, Slant, Haar, KLT, SVD, Radon and Wavelet Transform.

Unit III (22 hrs)

Image Enhancement and Restoration-Histogram modification and specification techniques, Noise distributions, Spatial averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic filters, Homomorphic filtering, Color image enhancement. Image Restoration – degradation model, Unconstrained and Constrained restoration, Inverse filtering, Wiener filtering, Geometric transformations – spatial transformations, Gray-Level interpolation.

Unit IV (21 hrs)

Image Segmentation and Recognition- Edge detection. Image segmentation by region growing, region splitting and merging, edge linking, Morphological operators: dilation, erosion, opening, and closing. Image Recognition – Patterns and pattern classes, matching by minimum distance classifier, Statistical Classifier. Matching by correlation, Neural network application for image recognition.

AI M 21 C21 DIGITAL IMAGE PROCESSING

Unit V (23 hrs)

Image Compression- Need for image compression, Huffman, Run Length Encoding, Arithmetic coding, Vector Quantization, Block Truncation Coding. Transform Coding – DCT and Wavelet. Image compression standards.

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,		
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group		
	Assignments,		
	Authentic learning: Library work and Group discussion, Presentation		
	by individual student/ Group representative		
Assessment	Mode of Assessment		
Types	C. Continuous Internal Assessment(CIA)		
	• Internal Tests – Minimum Two (Extended answers		
	/ Practical)		
	• Seminar–		
	 Research Literature Review 		
	 Report Writing 		
	 Presentation 		
	• Assignment – Written, Practical, Oral Presentation		
	and Viva		
	Case study/ Mini project		
	D. Semester End Examination		

REFERENCES

- 1. Rafael C. Gonzalez, Richard E. Woods, 'Digital Image processing', Pearson Education,Inc.
- 2. Scott E Umbaugh, 'Digital Image Processing and Analysis', CRC Press.
- 3. Anil K.Jain, 'Fundamentals of Digital Image Processing', Prentice Hall of India.
- 4. David Salomon: Data Compression The Complete Reference, SpringerVerlag New YorkInc.
- 5. Rafael C. Gonzalez, Richard E.Woods, Steven Eddins, 'DigitalImage Processing using MATLAB', Pearson Education.
- 6. William K. Pratt, 'Digital Image Processing', John Wiley, NewYork.
- 7. Milan Sonka, Vaclav Hlavac, Roger Boyle, 'Image Processing, Analysis, and Machine Vision', Brooks/Cole, Vikas Publishing House.

AI M 21 C21 DIGITAL IMAGE PROCESSING

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C22 APPLIED STATISTICS

School Name	School of Artificial	Intellige	ence and R	obotics		
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Applied Statistics	Applied Statistics				
Type of Course	Core					
Course Code	AI M 21 C22					
Names of	Dr. Sharon Susan J	acob,				
Academic Staff	M.Tech, Ph.D.					
&Qualifications						
Course	This course aim to	provide a	a solid fou	ndation in	all aspe	ects of statistics
Summary &	and to enable the stu	udents to	understan	d the fund	amentals	s of statistics to
Justification	apply descriptive m	easures a	and probab	ility for da	ata analy	sis. The course
	covers the essential topics such as concept correlation, regression,					
	probability and various tests.					
Semester	II					
Total Student	-					
Learning Time	Learning	Lectur	Tutorial	Practica	Other	Total
(SLT)	Approach	e		1	S	Learning
						Hours
	Explicit Teaching	42	28	14		
	Seminar,				36	120
	Assignments, etc.					
Pre-requisite	Proficiency in Line	ar Algeb	ra and fam	iliarity wit	th Probat	oility

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand and implement trending statistical methods to	U, A, S	1,3
	solve problems.		

AI M 21 C22 APPLIED STATISTICS

			1		
2	Use technic	jues of inferential statistics	A, An, E	1,2,3	
	appropriate	ly (confidence intervals,			
	hypothesis	tests for proportions, means, chi-			
	squared tes	ts and linear regression).			
3	Carry out n	nodel selection in a multiple linear regression	A, E, S	1,3	
	modelling of	context			
4	To acquain	t the students familiar with basic probability	U, R, An	1,2	
	distribution	s and their basic properties			
5	Able to app	ly and use the basic concepts related to	A, An	2,3	
	sampling te	chniques			
6	Perform sta	tistical analysis such as correlation and	A, An, S	2,3	
	regression				
7	Able to pre	pare the data and select appropriate methods	A, S, An, E	1,2,3,10	
	to represent	t data graphically and derive the basic			
	descriptive	statistics of the data.			
*Reme	*Remember(R), Understand(U), Apply(A), Analyse(An), Evaluate(E), Create(C), Skill				
(S)					

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	14	1
2	Unit II	15	7
3	Unit III	20	3,6
4	Unit IV	18	4
5	Unit V	17	5

AI M 21 C22 APPLIED STATISTICS

COURSE CONTENT Content for Classroom Transaction

Unit I (14 hrs)

Introduction to Statistics. Role of Statistics in Data Science. Concept of Population: Finite and Infinite population, Hypothetical and existent population, census method, sample method, types of sampling. Statistical Errors, Absolute Error and Relative error, Reducing Sample Error, Test of Reliability Error.

Unit II (15 hrs)

Classification and Tabulation: Overview of Classification, Statistical Series, Types of Series, Frequency Distribution, Continuous or Grouped Frequency Distribution. Magnitude of Class intervals, Cumulative Frequency Distribution, Two Way Frequency Distribution. Measures of Central Tendency, Measures of Dispersion.

Unit III (20 hrs)

Correlation: Concept of Correlation, Karl Pearson's Coefficient of Correlation, Spearman's rank correlation coefficient, Probable Error in correlation. Regression: Overview of Correlation, Graphical Method, Algebraic Method, Regression Line, Regression Equation, Standard Error of Estimate. Association of attributes: Introduction, Classification, Correlation and Association, Types of Association, Comparison of Observed and Expected Frequencies, Yule's Coefficient of Association, Yule's Coefficient of Colligation, Pearsons' Coefficient of Contingency Partial Association.

Unit IV (18)

Probability: Introduction, Mathematical Properties, Important terms and concepts: Permutation, Combination, Trail, Sample Events, Sample Space, Mutually Exclusive Cases, Exhaustive Events, Independent Events, Dependent Events, Simple and Compound Events, Classical, Relative Frequency. Theorems on probability. Theoretical Distribution: Binominal Distribution, Obtaining Coefficient, Poison Distribution, Normal Distribution.

UnitV (17 hrs)

Sampling Theory and test of significance: Introduction Estimation, Hypothesis, Standard Error, Test of Significance for Attributes, Test of Significance for Large Samples. Test of Significance for Small Samples. Chi-Square Test: Introduction, Assumption, Uses of Chi-Square Test of Goodness of fit, Chi-Square Test of Independence, Yate's Correction, Chi-Square test of Homogeneity, Additive Property.

Maran Supraver	MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning
	AI M 21 C22 APPLIED STATISTICS

Technique	Classroom Procedure (Mode of transaction)				
and Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-				
Approach	learning, Interactive Instruction: Active co-operative learning,				
	Seminar, Group Assignments				
	Authentic learning: Library work and Group discussion, Presentation by				
	individual student/Group representative.				
Assessment	Mode of Assessment				
Types	C. Continuous Internal Assessment (CIA)				
	• Internal Tests–Minimum two (Extended answers/Practical)				
	• Seminar –				
	 Research Literature review 				
	 Report writing 				
	 Presentation 				
	• Assignments–Written, Practical, Oral presentation and viva				
	Case study/Mini project				
	D. Semester End Examination				

REFERENCES

- 1.R.S.N. Pillai, Bagavathi, "Statistics Theory and Practice, S.Chand& Company.
- 2. Douglas C. Montgomery, George C. Runger., "Applied Statistics & Probability for Engineers", John Wiley & Sons. Inc.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C23 DEEP LEARNING

School Name	School of Artit	School of Artificial Intelligence and Robotics				
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Deep Learning	Deep Learning				
Type of Course	Core					
Course Code	AI M 21 C23					
Names of	Ms. Jissy Liz J	ose				
Academic Staff	M.Tech					
& Qualifications						
Course	Deep Learning	Deep Learning is one of the most exciting and promising segments of				
Summary &	Artificial Intel	ligence an	d machine	learning te	chnologies.	This course
Justification	aims to prov					
	Advanced dee		U			
	ranging across	-		language j	processing t	to machine
	vision and med	lical imagi	ng.			
Semester	Π					
Total Student						
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total
(SLT)	Approach					Learning
						Hours
	Explicit					
	Teaching	42	28			
						120
	Seminar,					
	Assignments				50	
	etc.					
	Machine					
Pre-requisite	Machine Learn	ung				

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the concepts of artificial neural networks,	U,An,A,E	1,2,3
	multilayer perceptrons and apply the back propagation		
	algorithm for training the neural network		

AI M 21 C23 DEEP LEARNING

2	Understand and apply gradient-descent techniques to train deep neural networks.	U, An, A	1,2,3
3	Understand and apply optimization and regularization in deep neural networks	U, An, A	1,2,3
4	Construct and train convolutional and recurrent neural networks.	U, An , A, E	1,2,3,7,8
5	Understand and apply the concept of Auto encoders and Long Short-Term Memory	U, An, A	1,2,3
6	Investigate Advanced Deep Learning Models and Applications	U, A, An, C,E	1,2,3,4,7, 8,10
7	Design and implement efficient algorithms to solve various real-life problems by applying concepts of deep neural network and presenting the approach effectively with appropriate tools.	U, A, An, C, E	1,2,3,4,7, 8,9,10
*Reme (S)	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	uate (E), Creat	te (C), Skill

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	12	1
2	Unit II	14	2,3
3	Unit III	16	4
4	Unit IV	12	4,5
5	Unit V	16	6,7

COURSE CONTENT Content for Classroom Transaction

Unit I (12 hrs.)

Artificial Neural Networks: Introduction, Perceptron Training Rule, Gradient Descent Rule, Activation Functions: Sigmoid, ReLU, Hyperbolic Fns, Softmax, McCulloch Pitts Neuron,

AI M 21 C23 DEEP LEARNING

Thresholding Logic, Perceptrons, Perceptron Learning Algorithm.

Unit II (14 hrs.)

Gradient Descent and Backpropagation: FeedForward Neural Networks, Backpropagation, Gradient Descent (GD), Stochastic Gradient Descent, Momentum Based GD, Nesterov Accelerated GD, Backpropagation, Some problems in ANN, vanishing gradient problem, Optimization and Regularization: Overfitting and Capacity, Cross Validation, Feature Selection, Regularization, Bias Variance Tradeoff, L2 regularization, Dataset augmentation, Parameter sharing and tying, Ensemble methods

Unit III (16 hrs.)

Convolutional Neural Networks: Convolution Operation, Pooling Operation, Convolution-Detector-Pooling Building Block, Convolution Variants, Intuition Behind Convolutional Neural Networks, Advanced CNNs and Transfer Learning, GANs.

Unit IV (12 hrs.)

Recurrent Neural Networks: RNN Basics, Training RNNs, Bidirectional RNNs, Encoder-Decoder Architecture, Gradient Explosion and Vanishing, Gradient Clipping, Autoencoders, Long Short-Term Memory

Unit V (16 hrs.)

Advanced Deep Learning Models and Applications: Image Processing, Natural Language Processing, Speech Recognition, Video Analytics.

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Explicit Teaching, E-learning					
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	• Internal Tests – Minimum two (Extended answers)					
	• Seminar –					
	 Research Literature review 					

	MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning
निवाया अपृतमञ्जुत	AI M 21 C23 DEEP LEARNING
	Poport writing
	Report writingPresentation
	• Assignments – Written, Oral presentation and viva.
	• Case study
	B. Semester End Examination

REFERENCES

- 1. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press.
- 2. Sandro Skansi, Introduction to Deep Learning, From Logical Calculus to Artificial Intelligence, Springer.
- 3. Umberto Michelucci, Advanced Applied Deep Learning, Apress.
- 4. Yegnanarayana B, Artificial Neural Networks, Prentice-HallIndiaPvt.Ltd.
- 5. N. Buduma, N. Locascio, Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, O'Reilly.
- 6. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C24 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

School Name	School of Arti	ficial Intell	igence and	Robotics				
Programme	M.Sc. Artificial Intelligence and Machine Learning							
Course Name	Fuzzy Logic and Nature Inspired Computing							
Type of Course	Core							
Course Code	AI M 21 C24							
Names of	Prof. Dr. Bindu V R, M. Sc., Ph. D.							
Academic Staff								
& Qualifications								
Course	The course pro			1		-		
Summary &	inspired comp	0 1	-					
Justification	-	comprehend the fuzzy logic and the concept of fuzziness involved in						
	various systems and fuzzy set theory. The students will also get the							
	concepts, principles, and applications of computing, which are inspired by processes and phenomena found in nature. It offers students an							
	• -	opportunity to appreciate those concepts, develop new insights and						
		methods, and turn them into practical problem-solving and modelling.						
	Particular examples of nature-inspired computing approaches included in							
	this course are Genetic Algorithms, Ant Colony Algorithms, Particle							
	_	Swam algorithms and Artificial Bee Colony algorithms.						
Semester	II		1	1	1			
Total Student	. .	T .	T 1		0.1			
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total		
(SLT)	Approach					Learning Hours		
	Explicit							
	Teaching	42	28	28				
						120		
	Seminar,							
	Assignments				22			
	etc.							
Pre-requisite	Basics of Algorithms, Programming, and Statistical analysis.							
r re-requisite	Dasies Of Algo	riumis, Pro	ogramming	s, and Statis	sucai anaiys	15.		

AI M 21 C24 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

CO No.	Expected Course Outcome	Learning Domains	PSO No.
110.		Domains	
1	Comprehend the fuzzy logic and the concept of	U	1,2
	fuzziness involved in various systems.		
2	Understand the concepts of fuzzy sets, fuzzification,	U, A	1,2,3,4
	defuzzification, fuzzy rules, fuzzy inference systems etc.		
	and apply fuzzy logic control to real time system.		
3	Understand the underlying nature inspired principles of	U, A, An	1,2,3,4
	Genetic Algorithms, Ant Colony Algorithms, Particle		
	Swam algorithms and Artificial Bee Colony algorithms		
	and the key ideas and steps involved in it.		
4	Compare and analyse different nature inspired	U, An, A,	1,2,3,4,10
	computing approaches and understand the strength,	E	
	weakness, and suitability and applications of each.		
5	Apply nature-inspired algorithms to optimization, design	S, A, An	1,2,3,4,7,
	and learning problems.		8,10
6	Evaluate performance of Nature inspired algorithm in	E, An	1,2,3,10
	context of problem solving in optimized manner		
*Reme (S)	context of problem solving in optimized manner ember (R), Understand (U), Apply (A), Analyse (An), Evalue	ate (E), Creat	e (C), ,

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	22	1,2
2	Unit II	22	3,4,5,6
3	Unit III	18	3,4,5,6
4	Unit IV	18	3,4,5,6
5	Unit V	18	3,4,5,6

AI M 21 C24 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

COURSE CONTENT Content for Classroom Transaction

Unit I (22 Hours)

Fuzzy Logic: Concepts of uncertainty and imprecision; Properties and operations on classical sets and fuzzy sets; Classical and fuzzy relations; Membership functions and its types; Fuzzification: Fuzzy rule-based systems; Defuzzification; Fuzzy propositions; Fuzzy extension principle; Fuzzy inference system, Fuzzy Logic Control Systems, Recent applications.

UNIT II (22 Hours)

Genetic Algorithms: Difference between traditional algorithms and Genetic Algorithm (GA); Basic concepts of GA; Working principle; Encoding methods; Fitness function; GAOperators: Reproduction, Crossover, Mutation; Convergence of GA; Detailed algorithmic steps; Adjustment of parameters; Multicriteria optimization; Solution of typical problemsusing genetic algorithm; Recent applications.

UNIT III (18 Hours)

Ant Colony Algorithms - Ant colony basics, hybrid ant system, ACO in combinatorial optimisation, variations of ACO.

UNIT IV (18 Hours)

Particle Swam algorithms - particles moves, particle swarm optimization, variable lengthPSO, applications of PSO.

UNIT V (18 Hours)

Artificial Bee Colony algorithms - ABC basics, ABC in optimization, multi-dimensionalbee colony algorithms, applications of bee algorithms, Case studies and Hybrid Systems.

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction: Explicit Teaching, E-learning			
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group			
	Assignments.			
	Authentic learning: Library work and Group discussion, Presentation by			
	individual student/Group representative.			

AI M 21 C24 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

Assessment	Mode of Assessment						
Types	A. Continuous Internal Assessment (CIA)						
	• Internal Tests – Minimum two (Extended answers)						
	• Seminar –						
	 Research Literature review 						
	 Report writing 						
	Presentation						
	• Assignments – Written, Oral presentation and viva.						
	Case study						
	B. Semester End Examination						

REFERENCES

- 1. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.
- 2. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications, PHI.
- 3. S. N. Sivanandam and S. N. Deepa, Principles of Soft Computing, 2nd ed., Wiley India.
- 4. J. Zurada, Introduction to Artificial Neural Systems, Jaico Publishing House.
- 5. G. Klir, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Pearson.
- 6. John Yen, Reza Langari, Fuzzy Logic –Intelligence, Control and Information, PearsonEducation.
- 7. Albert Y.Zomaya, "Handbook of Nature-Inspired and Innovative Computing", Springer.
- 8. Floreano, D. and C. Mattiussi, "Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies", MIT Press.
- 9. Leandro Nunes de Castro, "Fundamentals of Natural Computing, Basic Concepts, Algorithms and Applications" Chapman & Hall/ CRC, Taylor and Francis Group.
- 10. Marco Dorrigo, Thomas Stutzle -" Ant Colony Optimization", Prentice Hall of India,New Delhi.

AI M 21 C24 FUZZY LOGIC AND NATURE INSPIRED COMPUTING

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E21 ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROGRAMMING

School Name	School of Arti	ficial Intell	igence and	l Robotics		
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Advanced Computer Architecture and Parallel Programming					
Type of Course	Elective					
Course Code	AI M 21 E21					
Names of	Ms. Jissy Liz J	ose, M.Te	ch			
Academic Staff & Qualifications						
Course Summary & Justification Semester	The course covers the parallel computer architectures and various parallel programming models. The course further discusses parallel programming with OpenMP and MPI. It also gives training in parallel programming with OpenCL/ CUDA for massively parallel GPUs. The students will be equipped with various technical and programming skills to generate parallel executable software that reduce the delay in getting the output or that increase the speed and overall performanceof a computer system for solving problems that requires huge sized data. II					
Total Student LearningTime (SLT)	Learning Approach	Lecture	Tutorial	Practical	Others	Total Learning Hours
	Explicit Teaching Seminar,	42	14	28		120
	Assignments etc.				36	
Pre-requisite	Computer Org Programming		and Archit	ectures, Mi	croprocesso	rs and Basic
COURSE OUTCO	0 0	54115				
<i>~~</i>		0		1		DGO M

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand the difference in the features of single core	U	1,2

AI M 21 E21 ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROGRAMMING

	microprocessors and multicore microprocessors.		
2	Conceptualise the specific features of a parallel	U, An	1, 2
	computer through Flynn's Taxonomy.		
3	Evaluate the performance of processors based on	A, An, E	1, 2, 3
	memory hierarchy, cache performance and cache		
	designing.		
4	Develop and test programs that can do shared memory	A, An, C	1,2, 3
	parallel programming using OpenMP		
5	Develop and test programs that can do process to	A, An, C	1,2, 3,
	process communication using MPI.		
6	Demo the application of the features of OpenCL/ CUDA	A, C, S	1,2,3, 7
	to solve problems that needs massively parallel data		
	handling operations with GPU processors.		
7	Document, present and demonstrate concepts of parallel	An, E, C	1,2,
	programming in a very clear and effective way with the		3,7,8,9,10
	aid of appropriate tools.		
*Reme	mber (R), Understand (U), Apply (A), Analyse (An), Evalu	ıate (E), Cre	ate (C), Skill
(S)			

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	14	1,3
2	Unit II	18	2
3	Unit III	15	4,7
4	Unit IV	15	5,7
5	Unit V	22	6,7

AI M 21 E21 ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROGRAMMING

COURSE CONTENT Content for Classroom Transaction

Unit I (14 hours)

Introduction to Multicore Processors, Single Core Vs Multicore Processors, Architecture of Multicore Processors, Case Study: Architecture of the Intel Core i7, Caches and Memory Hierarchy

Unit II(18 hours)

Parallel Computer Architecture, Flynn's Taxonomy of Parallel Architectures, Memory organization of parallel computers, Parallel Programming Models, Levels of parallelism, Performance Analysis of Parallel Programs

Unit III(15 hours)

Shared Memory Parallel Programming using OpenMP, Shared Memory Programming Model, Multithreaded Programs, Parallelization of Loops, Parallel Tasks.

Unit IV (15 hours)

MPI Processes and Messaging, Distributed Memory Computers, Message Passing Interface, Basic MPI Operations, Process-to-Process Communication, Collective MPI Communication, Sources of Deadlocks.

Unit V(22 hours)

Graphics Processing Unit (GPU) - Anatomy of a GPU, Programmer's View, GPU Programming using OpenCL/ CUDA.

Teachingand	Classroom Procedure (Mode of transaction)					
LearningApp	Direct Instruction: Explicit Teaching, E-learning					
roach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					

AI M 21 E21 ADVANCED COMPUTER ARCHITECTURE AND PARALLEL PROGRAMMING

Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	 Internal Tests – Minimum two (Extended answers) Seminar – 					
	 Research Literature review 					
	 Report writing 					
	 Presentation 					
	• Assignments – Written, Oral presentation and viva.					
	Case study					
	B. Semester End Examination					

REFERENCES

1. A. K. Ray & K. M. Bhurchandi, Advanced Microprocessors and Peripherals- Architectures, 3e, McGrawHill Education (India)Pvt. Ltd.

2. Berry.B.Brey, The Intel Microprocessors 8086/8088 /80186/80188, 80286, 80386,80486 PENTIUM, PENTIUM Pro, PII, PIII & IV Architecture, Programming & Interfacing, Pearson Education..

3. Roman Trobec, Boštjan Slivnik Patricio Bulić, Borut Robič, Introduction to Parallel Computing From Algorithms to Programming on State-of-the-Art Platforms, Springer Nature Switzerland AG 2018, ISSN 1863-7310 ISSN 2197-1781 (electronic).

4. Yan Solihin, Fundamentals of Parallel Multicore Architecture, CRC Press

5. Thomas Rauber, Gudula Runger, Parallel Programming for Multicore and Cluster Systems, Second Edition, Springer-Verlag Berlin Heidelberg, ISBN 978-3-642-37800-3.

6. Aaftab Munshi, Benedict R. Gaster, Timothy G. Mattson, James Fung, Dan Ginsburg, OpenCL Programming Guide, Addison-Wesley, Pearson Education Inc.

7. David W. Walker, Parallel Computing, Encyclopedia of Physical Science and Technology (Third Edition).

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E22 CYBER SECURITY AND CYBER LAWS

School Name	School of Artificial Intelligence and Robotics								
Programme	M.Sc. Artificial Intelligence and Machine Learning								
Course Name	Cyber Security and Cyber Laws								
Type of Course	Elective	Elective							
Course Code	AIM 21 E22								
Names of	Dr. Ivy Prathap M.So	c. Ph. D.							
Academic Staff									
& Qualifications									
Course	This course focuses of								
Summary &	security. This furnish								
Justification	internet-enabled and								
	understand the implic								
	course covers Proxies		• •		-				
	and dictionary attac				ocial eng	ineering and			
	protection of informat	tion using	cyber laws	5.					
Semester	II								
Total Student									
Learning Time	Learning Approach	Lecture	Tutori	Practi	Others	Total			
(SLT)			al	cal		Learning			
						Hours			
	Explicit Teaching	42	14	28					
	Seminar,				36				
	Assignment,					120			
	case Study etc.								
Pre-requisite		Fundame	entals of ne	etworking					

COURSE OUTCOMES

CO	Expected Course Outcome	Learning	PSO	
No.		Domains	No.	

AI M 21 E22 CYBER SECURITY AND CYBER LAWS

1	Understand the significance of cyber security, cryptography and its importance	R, U	1, 2, 7, 8, 9			
2	Analyze Attacker technique and motivations	A, An, S, E	2, 3, 7, 8, 9			
3	Analyse and evaluate various cyber attacks	C, An, S, E	2, 3, 7, 8, 9, 10			
4	Understand various cybercrimes and cyber laws to protect information	U, A, An	2, 4, 7,8, 9			
5	Illustrate cyber laws to protect information in social media	A, C, An, E	2, 7, 8, 9,10			
	*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)					

COURSE CONTENT Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	15	1
2	Unit II	20	2
3	Unit III	15	3
4	Unit IV	20	4
5	Unit V	14	5

COURSE CONTENT Content for Classroom Transaction

Unit I (15 hrs)

Introduction to Cyber Security; Information security, Network and security concept; Information assurance fundamentals, Basic cryptography, Symmetric encryption, Public key encryption, firewalls and virtualization.

AI M 21 E22 CYBER SECURITY AND CYBER LAWS

Unit II (20 hrs)

Attacker technique and motivations; Using Proxies, Tunneling technique, Fraud technique, Rogue antivirus, Click fraud, Threat infrastructure, Exploitation; Shell code, Integer overflow, Stack based buffer overflows, String vulnerabilities, SQL injection, Malicious PDFfile, Race condition, Web exploit tools, DoS condition.

Unit III (15 hrs)

Brute force and dictionary attacks, Cross site scripting, Social engineering, WarXing, Malicious code; self-replicating malicious code, Evading detection and elevating privileges, Stealing information and exploitation, Memory forensics, Honeypots, Malicious code naming, Intrusion detection system

Unit IV (20 hrs)

Famous cybercrimes, Cybercrime taxonomy, Civil vs criminal cybersecurity offenses, Basic element of criminal law, Branches of law, Tort law, Cyber law enforcement, Cybersecurity law jurisdiction, Cybercrime and cyber tort punishment.

Unit V (14 hrs)

Cyber privacy and data protection law; Common law of privacy, Privacy laws, Data breach laws, Data breach litigation, Privacy notice law, Personal liability, Data disposal law, Cryptography and digital forensics law, Social media privacy, Future development in cybersecurity law.

Classroom	Mode of transaction					
Procedure	Direct Instruction: Brain storming lecture, Practical Session, Explicit					
	Teaching, E-learning,					
	Interactive Instruction:, Active co-operative learning, Seminar, Group					
	Assignments					
	Authentic learning, Library work and Group discussion, Presentation by					
	individual student/ Group representative.					
Assessment	Mode of Assessment					
Types	A. Continuous Internal Assessment (CIA)					
	• Internal Tests – Minimum two (Extended answers / Practical)					
	• Seminar –					
	1. Research Literature review					
	2. Report writing					
	3. Presentation					

AI M 21 E22 CYBER SECURITY AND CYBER LAWS

 Assignments – Written, Practical, Oral presentation and viva Case study/Mini project
B. Semester End Examination

REFERENCES

- 1. James Graham, Rick Howard, Ryan Olson, Cyber Security Essentials, CRC Press, 2016.
- 2. MayankBhushan, Rajkumar Singh Rathore, AatifJamshed, Fundamentals of Cyber Security, BPB Publications, 2017.
- 3. TariSchreider, Cybersecurity Law, Standards and Regulations, 2nd Edition, Rothstein Publishing, 2020.
- 4. Information Resources Management Association, Cyber Law, Privacy, and Security Concepts, Methodologies, Tools, and Applications, IGI Global, 2019.
- 5. Jeff Kosseff, Cybersecurity Law, Wiley, 2019.

AI M 21 E23 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

School Name	Cabaal of Artic	Colol Tretall		Dahatian]			
School Name	School of Artificial Intelligence and Robotics								
Programme	M.Sc. Artificial Intelligence and Machine Learning								
Course Name	Internet of Thi	Internet of Things and Block Chain Technologies							
Type of Course	Elective	Elective							
Course Code	AI M 21 E23								
Names of	Dr. Abdul Jabl	oar P, MPh	iil, PhD						
Academic Staff									
& Qualifications									
Course	The course co	vers the th	eoretical c	oncept of th	e design, co	onfiguration,			
Summary &	and implement	ntation of	block cha	in connecte	ed devices.	The course			
Justification	includes in-de	pth covera	age of var	ious aspects	s of connec	tions, smart			
	object, smart e	object, smart environment and privacy issues of IoT and block chain.							
	This course en	This course enables students to build different IoT based solutions and							
	use principles	of Blockcl	nain techno	ology and it	s application	ns over			
	different sector	different sectors.							
Semester	II								
Total Student									
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total			
(SLT)	Approach					Learning			
						Hours			
	Explicit								
	Teaching	42	14	28					
						120			
	Seminar,								
	Assignments				36				
	etc.								
Pre-requisite	Programming,		Networks	, Operating	Systems, C	ryptography			
	and Network Security.								
COURSE OUTCO	OMES (CO)								

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the applications and basic concepts of IoT	U, A,R	1,2,10
	and Block chain.		
2	Understand and formulate key Block chain concepts	U, An, S, E	3,4

AI M 21 E23 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

3	Create IoT smart object in smart environment	C,A,S, E	1,2,3	
4	Identify the security and privacy issue of IoT	A, An ,C	1,2,3,7	
5	Manage and develop secure system using IoT and Block	A, C, An, E	1,2,3,8	
	chain			
6	Formulate and evaluate remote controllable systems	A,S,C, E	1,2,3	
7	Analyze, apply and use various cryptographic methods	U,A	1,2,3, 7	
	to secure data and connected devices.			
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill				
(S)				

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	15	1
2	Unit II	20	2
3	Unit III	15	3
4	Unit IV	20	4,6
5	Unit V	14	5,7

COURSE CONTENT Content for Classroom Transaction

Unit I (15 hrs)

Introduction to Blockchain in Internet of Things, Overview, Blockchain application in internet of things, Security and privacy in Internet of things, Technical dimensions of blockchain, Consensus mechanism, Key issues in internet of things, Architectures of Internet of things, Evaluation metrics of internet of things.

Unit II (20 hrs)

Key Blockchain concepts, Nodes, Cryptocurrency, Tokens, Cryptography, Modern encryption, Public and Private keys, Hash, Ledgers, Proof of work, Proof of stake,

AI M 21 E23 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

Hyperledger, Ripple, Unearthing Ethereum, Second generation application of blockchain techniques, Smart contracts, Decentralised application.

Unit III (15 hrs)

Internet of things concepts, Smart object and smart environment, Machines to machines communication, IoT framework, Network connectivity, Sensors, Actuator, Radio frequency identification, Middleware Technologies, Data Exchange.

Unit IV (20hrs)

Security and Privacy issues in internet of things; Confidentiality, Integrity, Authentication, Privacy concerns in IoT; Identity, Location, Trajectory, Blockchain in privacy preserving cloud data storage services; Technical dimension in cloud data preserving services, Basic techniques, Threat model, Data submission, Primitiveness identification, Blockchain enabled controllable data management, System initialization, Document modification, Documents Management, User registration, Voting and counting, Use case.

Unit V (14 hrs)

Quantitative analysis; Problem of interest, Programs as graph, Factors determining execution time, Execution time analysis, Security and Privacy; Cryptographic primitives, Protocol and networks security, Information flow, Identity, Blockchain Protected Identity, Blockstack, Microsoft, IBM's Trusted Identity, Blockchain and IoT, Toyota, IBM.

Teaching and Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Explicit Teaching, E-learning				
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group				
	Assignments				
	Authentic learning: Library work and Group discussion, Presentation by				
	individual student/Group representative.				
Assessment	Assessment Mode of Assessment				
Types	A. Continuous Internal Assessment (CIA)				
	• Internal Tests – Minimum two (Extended answers)				
	• Seminar –				
	 Research Literature review 				
	 Report writing 				
	 Presentation 				
	• Assignments – Written, Oral presentation and viva.				
	Case study				

AI M 21 E23 INTERNET OF THINGS AND BLOCK CHAIN TECHNOLOGIES

B. Semester End Examination

REFERENCES

1. Shiho Kim, Peng Zhang and Ganesh Chandra, Role of Blockchain Technologies in IoT Applications, Academic Press, Elsevier.

2. Liehuang Zhu,Keke Gai and Meng Li, Blockchain Technology in Internet of Things, Springer International Publishing.

3. Qusay F. Hassan, Internet of Things A to Z; Technologies and Applications, Wiley.

4. Chellammal Surianarayanan, Kavita Saini, Pethuru Raj, Blockchain Technology and Applications, CRC Press.

5. Ahmed Banafa, Secure and Smart Internet of Things (IoT) Using Blockchain and Artificial Intelligence (AI), River Publishers.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C26 DEEP LEARNING LAB

	School of Artificial Intelligence and Robotics					
Programme M.Sc. Artificial Intelligence and Machine Learnin			ning			
Course Name	me Deep Learning Lab					
Type of Course	Core					
Course Code	AI M 21 C26					
Names of	Ms. Jissy Liz Jose					
	Academic Staff M.Tech.					
& Qualifications						
	Deep Learning is one of the most exciting and promising segments of					
•	Artificial Intelligence and Machine Learning technologies. This course					
	aims to provide practical skills on deep neural networks. After					
	completion of this course, the students will be acquainted with the					
	knowledge of developing a successful deep learning model from scratch.					
Semester	II					
Total Student						
LearningTime	Learning	Lecture	Tutorial	Practical	Others	Total
(SLT)	Approach					Learning Hours
	Explicit					
	Teaching		28	84		
						120
	Seminar,					
	Assignments				8	
	etc.					
D		·	1 · · ·	•		
Pre-requisite Python Programming, Machine Learning						

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Implement backpropagation algorithm for training the neural network	U,An,A,E	1,2,3,8
2	Implement gradient-descent techniques to train deep neural networks.	U, An, A	1,2,3

AI M 21 C26 DEEP LEARNING LAB

4 I	networks.	Е			
]					
	Design and develop Auto encoders and Long Short-	U, An, A	1,2,3		
- T	Term Memory				
5 I	Evaluate the performance of deep learning models	An, A, E	1,2,3		
6 I	Design and implement an application of deep learning	U, A, An,	1,2,3,5,		
ł	by applying concepts of deep neural network and	S,C,E	8,10		
I	present the approach effectively with appropriate tools.				
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill					

(S)

COURSE CONTENT

Content for Classroom Transaction

Apply deep learning techniques to solve problems by implementing and testing relevant learning algorithms. The programs from following topics are to be at least covered in the lab. Familiarization of deep libraries - Tensorflow, Keras, Caffe etc., Implementation of backpropagation algorithm, gradient-descent techniques to train deep neural networks, convolutional and recurrent neural networks, Auto encoders and Long Short-Term Memory and Case Studies.

Teaching and	Classroom Procedure (Mode of transaction)
Learning	Explicit Teaching, E-learning, Active co-operative learning, Inquiry- based
Approach	instruction, Authentic learning, Library work and Group discussions.
Assessment	Mode of Assessment
Types	Continuous Internal Assessment (CIA)
	Technical skills evaluation - Correctness of programs
	Assignments -Lab Records, Practical and Viva
	• Internal Test
	• Case study

AI M 21 C26 DEEP LEARNING LAB

REFERENCES

- 1. Ronald T. Kneusel, Practical Deep Learning: A Python-Based Introduction, No StarchPress, 2021.
- 2. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press.
- 3. Umberto Michelucci, Advanced Applied Deep Learning, Apress.
- 4. Yegnanarayana B, Artificial Neural Networks, Prentice-HallIndia Pvt.Ltd.
- 5. N. Buduma, N. Locascio, Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, O'Reilly.
- 6. C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 C31 COMPUTER VISION

School Name	School of Artificial I	Intelligence	e and Robo	tics			
Programme	M.Sc. Artificial Intelligence and Machine Learning						
		8			6		
Course Name	Computer Vision						
Type of Course	Core	Core					
Course Code	AI M 21 C31						
Names of	Prof. Dr. Bindu V R,	M. Sc., P	h. D.				
Academic Staff							
& Qualifications							
Course	Computer vision seel				-		
Summary &	amazing capabilities					_	
Justification	external world purely	•	-			•	
	to the eyes. We can			-	-	=	
	are oriented with resp			-		Ũ	
	This is a field of con	-					
	identify and underst	U U	1 1		U		
	course provides an		-	-			
	regions and boundari	les, 3D Vis	ion, recent	researcr	ies and ap	oplications.	
Semester	III						
Total Student							
Learning Time	Learning Approach	Lecture	Tutorial	Prac	Others	Total	
(SLT)				tical		Learning	
						Hours	
	Explicit Teaching						
		42	28			100	
	Seminar,					120	
	Assignment,				50		
		1		1			
	case Study etc. Fundamentals of ima				00		

COURSE OUTCOMES

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Understand image processing fundamentals	U, An	1,2,10

AI M 21 C31 COMPUTER VISION

			1.0.0	
2	Discuss shapes, regions and boundary tracking	An, A, E	1,2,3	
	procedures			
3	Understand Hough Transform	U, An	1,2,3	
4	Illustrate 3D vision	U, A, An, C	1,2,3,9	
5	Understand motion and types	U, A, C	1,2,3	
7	Discuss case Studies and recent researches in	U, An, A,	1,2,3,4,9	
	Computer Vision	С, Е		
8	Illustrate applications of Computer Vision	A, An	1,2,9,10	
		,		
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill				
(S)				

COURSE CONTENT

Content for Classroom transaction

Unit	Course description	Hrs	CO No.
1	Unit I	12	1
2	Unit II	15	2
3	Unit III	13	3
4	Unit IV	15	4, 5
5	Unit V	15	7, 8

Content for Classroom Transaction Unit I (12 hrs)

Image Processing Foundations: Review of image processing techniques; classical filtering operations; thresholding techniques; edge detection techniques; corner and interest point detection; mathematical morphology; texture.

Unit II (15 hrs)

Shapes And Regions: Binary shape analysis; connectedness; object labelling and counting; size filtering; distance functions; skeletons and thinning; deformable shape analysis; boundary tracking procedures; active contours; shape models and shape recognition; centroidal profiles; handling occlusion; boundary length measures; boundary descriptors; chain codes; Fourier descriptors; region descriptors; moments.

AI M 21 C31 COMPUTER VISION

Unit III (13 hrs)

Hough Transform: Line detection; Hough Transform (HT) for line detection; foot-of-normal method; line localization; line fitting; RANSAC for straight line detection; HT based circular object detection; accurate centre location; speed problem; ellipse detection; Generalized Hough Transform (GHT); spatial matched filtering; GHT for ellipse detection; object location; GHT for feature collation.

Unit IV (15 hrs)

3D Vision: Methods for 3D vision; projection schemes; shape from shading; photometric stereo; shape from texture; shape from focus; active range finding; surface representations; point-based representation; volumetric representations; 3D object recognition; 3D reconstruction.

Introduction To Motion: Triangulation; bundle adjustment; translational alignment; Parametric motion; spline-based motion; optical flow; layered motion

Unit V (15 hrs)

Case Studies and recent researches in Computer Vision: Applications like face detection, face recognition, eigen faces, surveillance, foreground-background separation, particle filters, Chamfer matching, tracking, and occlusion; combining views from multiple cameras; human gait analysis; locating roadway; road markings; identifying road signs; locating pedestrians.

Teaching and	Classroom Procedure (Mode of transaction)				
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,				
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group				
	Assignments,				
	Authentic learning: Library work and Group discussion, Presentation				
	by individual student/ Group representative				
Assessment	Mode of Assessment				
Types	C. Continuous Internal Assessment (CIA)				
	• Internal Tests – Minimum Two (Extended answers /				
	Practical)				
	• Seminar–				
	 Research Literature Review 				
	 Report Writing 				
	 Presentation 				
	• Assignment – Written, Practical, Oral Presentation				
	and Viva				
	Case study/ Mini project				
	D. Semester End Examination				

AI M 21 C31 COMPUTER VISION

REFERENCES

- 1. D. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Pearson Education.
- 2. J. Solem, Programming Computer Vision with Python: Tools and Algorithms for Analyzing Images.
- 3. M. Nixon and A. Aquado, Feature Extraction & Image Processing for Computer Vision, 3rd Edition, Academic Press.
- 4. R. Jain, R. Kasturi, B. Schunck, Machine Vision, Indo American Books.
- 5. R. Szeliski, Computer Vision: Algorithms and Applications, Springer.
- 6. S. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press.

Approval Date	
Version	
Approval by	
Implementation Date	

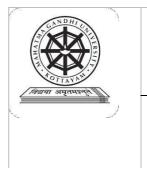
AI M 21 C32 DATA SCIENCE AND ANALYTICS

School Name	School of Artificial Intelligence and Robotics						
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Data Science and Ar	Data Science and Analytics					
Type of Course	Core	Core					
Course Code	AI M 21 C32						
Names of	Dr. Sharon Susan J	acob,					
Academic Staff	M.Tech, Ph.D.						
&Qualifications							
Course	The main motive of	the progr	ram is to er	nable stude	ents to ci	eate innovative	
Summary	solutions to real-t	ime pro	blems, th	e student	ts are t	ransformed to	
&	professionals by p			•	•	-	
Justificati	implement solutions		-		-	cal knowledge.	
on	Also provides the ba	asic intro	duction to	bigdata an	alysis.		
Semester	III						
Total Student							
Learning Time	Learning	Lectur	Tutorial	Practica	Other	Total	
(SLT)	Approach	e		1	S	Learning	
						Hours	
	Explicit Teaching	42	28	-			
						120	
	Seminar,				50		
	Assignments, etc.						
Pre-requisite	Should have good l	knowledg	ge in mach	ine learnin	g and sta	tistics	

COURSE OUTCOMES(CO)

CO No.	Expected Course Outcome	Learning Domains	PSO No.
1	Define data science, its scope and applications	U, An	1,3

	School of M Sc Art	MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning AI M 21 C32 DATA SCIENCE AND ANALYTICS			
2	Describe the Data Science process a	and how	U, E	1,3	
	its components interact.				
3	Differentiate data science and data	te data science and data analytics		1	
4	Apply EDA and the Data Science p	rocess in a case study	A, An	1,10	
5	Classify Data Science problems	R, C	1,3		
6	Understand the concept of Bigdata	Understand the concept of Bigdata		1,3,10	
7	Understand NoSql databases, HDFS	U, R, E	1,3		
*Ren (S)	member(R), Understand(U),Apply(A),A	Analyse(An),Evaluate(E),Create(C	C), Skill	


COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	12	1
2	Unit II	14	2,3
3	Unit III	13	4
4	Unit IV	16	6
5	Unit V	15	7

COURSE CONTENT

Content for Classroom Transaction

AI M 21 C32 DATA SCIENCE AND ANALYTICS

Unit I (12 hrs)

Introduction to Data Analytics: Sources and nature of data, classification of data (structured, semi-structured, unstructured), characteristics of data, need of data analytics, evolution of analytic scalability, analytic process and tools, analysis vs reporting, modern data analytic tools, applications of data analytics.

Unit II (14 hrs)

Data Analytics Lifecycle: Need, key roles for successful analytic projects, various phases of data analytics lifecycle – discovery, data preparation, model planning, model building, communicating results, operationalization.

Data Pre-processing and Feature selection: Data cleaning - Data integration - Data Reduction - Data Transformation and Data Discretization, Feature Generation and Feature Selection, Feature Selection algorithms.

Unit III (13 hrs)

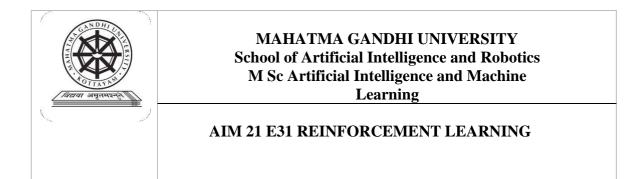
Application: Exploratory Data Analysis (EDA), statistical measures, Basic tools (plots, graphs and summary statistics) of EDA, Data Analytics Lifecycle, Discovery, EDA case study, Web scraping, Text data and Natural Language Processing. Data Visualization, Data Science and Ethical Issues, Discussions on privacy, security, ethics.

Unit IV (16 hrs)

Bigdata – Concepts, Types and sources of Bigdata, Characteristics, Challenges of bigdata, Bigdata applications, Hadoop Distributors. NoSQL databases – Types of NoSQL databases, SQL vs NoSQL. Introduction to Hadoop, Features of Hadoop, Hadoop core components – HDFS, MapReduce, YARN.

Unit V (15 hrs)

Hadoop Distributed File System (HDFS)- HDFS architecture, Applicability of HDFS, Processing data with Hadoop – MapReduce, MapReduce Examples. Hadoop ecosystem technologies – Data Ingestion: Sqoop, Flume, Data processing: Spark, MapReduce, Data Analysis: Pig, Hive, Impala, Coordination: Zookeeper, Database: HBase, Streaming: Flink, Storm.


Recent sugernaries	MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning
	AI M 21 C32 DATA SCIENCE AND ANALYTICS

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-					
Approach	learning, Interactive Instruction: Active co-operative learning,					
	Seminar, Group Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					
Assessment	Mode of Assessment					
Types	E. Continuous Internal Assessment(CIA)					
	• Internal Tests–Minimum two (Extended answers/Practical)					
	• Seminar –					
	 Research Literature review 					
	 Report writing 					
	 Presentation 					
	• Assignments–Written, Practical, Oral presentation and viva					
	Case study/Mini project					
	F. Semester End Examination					

REFERENCES

- 1. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer
- 2. Tom White "Hadoop: The Definitive Guide" Third Edition, O'reily Media, 2012.
- 3. Seema Acharya, Subhasini Chellappan, "Big Data Analytics" Wiley 2015.
- 4. Mining of Massive Datasets. v2.1, Jure Leskovek, Anand Rajaraman and Jefrey Ullman., Cambridge University Press. (2019).
- 5. Data Mining: Concepts and Techniques", Third Edition, 2 Jiawei Han, Micheline Kamber and Jian Pei, ISBN 0123814790, (2011).

Approval Date	
Version	
Approval by	
Implementation Date	

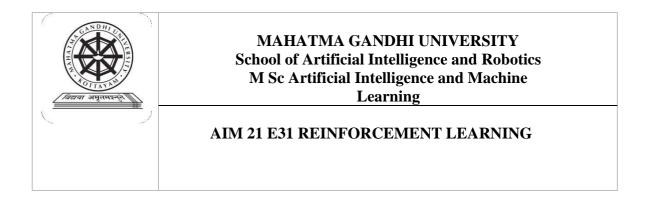
School Name	School of Artificial Intelligence and Robotics						
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Reinforcement Lea	Reinforcement Learning					
Type of Course	Elective						
AI M 21 E33	AI M 21 E31						
Names of	Dr. Ivy Prathap M.	Sc. Ph. D).				
Academic Staff							
& Qualifications Course	Deinfensenent les m			o obie o lo			
Summary &	Reinforcement learr or a system of agent	-			-	-	
Justification	environment. This			0		e	
Justification	decision making an	-			0	-	
	robotics, game play	-			-	-	
				U			
	course introduces the statistical learning techniques where an agent explicitly takes actions and interacts with the world.						
Semester	III				ond.		
					[
Total Student	т ·	T (т. ·			T (1	
Learning Time	Learning	Lecture	Tutori	Practi	Others		
(SLT)	Approach		al	cal		Learning	
	Hours						
	Explicit Teaching421428						
	Seminar, 36						
	Assignment, 120						
	case Study						
	etc.						
Pre-requisite	Basic statistics			<u> </u>	1		

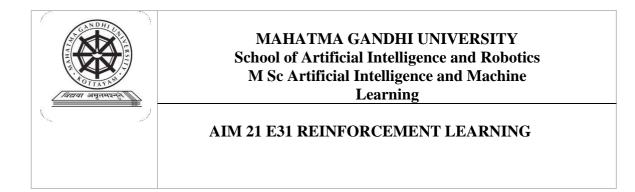
COURSE OUTCOMES

CO	Expected Course Outcome	Learning	PSO
No.		Domains	No.
1	Understand the basics of Reinforcement Learning	U, An	1,2

Haran Sugarasta		MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning				
		AIM 21 E31 REINFORCEME	ENT LEARNIN	NG		
2	Analyse t	he RL problem	An, A, S	1,2		
3	Solve the	Solve the RL problem		1,2,3		
4	Elucidate Long-life learning in agents		E, A, R	1, 2, 9		
5	5 Examine Distributed Reinforcement Learning An, E 1,2					
*Remember (R), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S)						

COURSE CONTENT Content for Classroom Transaction


Unit	Course description	Hrs	CO No.
1	Unit I	10	1
2	Unit II	24	2,3
3	Unit III	20	3
4	Unit IV	16	4
5	Unit V	14	5


COURSE CONTENT

Content for Classroom Transaction (Sub-units)

Unit I (10 hrs)

Introduction to Reinforcement Learning (RL) – Elements – Limitations and scope- Types of Reinforcement Learning - Supervised vs. unsupervised vs. Reinforcement Learning -Defining RL framework.

Unit II (24 hrs)

Defining an RL problem – Markov Decision Processes - The Agent - Environment relationship, Markov Property, Markov Process and Markov chains, Markov Reward Process. Classic Exploration strategies - Epsilon-greedy, Upper confidence bounds, Boltzmann exploration, Thompson sampling.

Unit III (20 hrs)

Solving an RL problem – Model based vs. Model-free reinforcement learning methods-Dynamic Programming, role of value functions, policy evaluation, policy improvement – value improvement - Monte Carlo methods - On-policy and off policy methods-Temporal Difference learning – SARSA and Q-Learning.

Unit IV (16 hrs)

n-step Bootstrapping - n-step TD Prediction - n-step SARSA – n-step off policy learning - Towards Long-life learning in agents- Reinforcement Learning in the multi-agent framework.

Unit V (14 hrs)

Imitation learning, Inverse Reinforcement Learning, Distributed Reinforcement Learning -Frontiers of RL research: using LSTM, Attention models, Transformers with reinforcement learning- Open challenges and hot topics in reinforcement learning.

Teaching and	Classroom Procedure (Mode of transaction)			
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-			
Approach	learning, Interactive Instruction: Active co-operative learning,			
	Seminar, Group Assignments			
	Authentic learning: Library work and Group discussion, Presentation by			
	individual student/Group representative.			

ARTER SIZERIUS-	MAHATMA GANDHI UNIVERSITY School of Artificial Intelligence and Robotics M Sc Artificial Intelligence and Machine Learning AIM 21 E31 REINFORCEMENT LEARNING
Assessment	Mode of Assessment
Types	E. Continuous Internal Assessment(CIA)
	• Internal Tests–Minimum two (Extended answers/Practical)
	• Seminar –
	 Research Literature review
	 Report writing
	 Presentation
	• Assignments–Written, Practical, Oral presentation and viva
	Case study/Mini project
	F. Semester End Examination

REFERENCES

1. Richard S. Sutton and Andrew G. Barto, "Reinforcement Learning - An Introduction", Second Edition, The MIT Press.

- 2. Alberto Leon-Garcia, "Probability, Statistics, and Random Processes for ElectricalEngineering", 3rd Edition, Pearson Prentice Hall.
- 3. Szepesvári, Csaba. "Algorithms for reinforcement learning", Synthesis lectures onartificial intelligence and machine learning 4.1 (2010): 1-103.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E32 NATURAL LANGUAGE PROCESSING

School Name	School of Artificial Intelligence and Robotics							
Programme	M. Sc. Artificial Intelligence and Machine Learning							
Course Name	Natural Language Processing							
Type of Course	Elective							
Course Code	AIM 21 E32							
Names of Academic Staff & Qualifications	Ms. Jissy Liz Jose, M.Tech							
Course Summary & Justification	The course provides an insight into the principles and methodological introduction to the most widely used and effective strategies of natural language processing. The course examines various NLP models and algorithms, text retrieval strategies, exploratory analysis, syntactic parsing, semantics and pragmatics. NLP has applications in many domains such as computer science, journalism, social science, psychology, political science etc. where language processing is crucial. After successfully completing this course, the students will be able to understand the significance of natural language processing in solving real-world problems. They will be able to map the appropriate processing							
Semester	technique to a proble							
Total Student Learning Time (SLT)	Learning Approach Lecture Tutori al Practi cal Others Total Learning Hours							
	Explicit Teaching421428Seminar,36							
	case Study etc.	Assignment, 120 case Study etc.						
Pre-requisite	Basics of Algorithms a	nd Statistic	cal analysis	5.				

COURSE OUTCOMES

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Understand the fundamental concepts and	R, U	1,2,3
	steps of natural language processing.		
2	Distinguish among the various NLP	U, An, E	1,2,3

AI M 21 E32 NATURAL LANGUAGE PROCESSING

	techniques, considering the assumptions,		
	strengths, and weaknesses of each.		
3	Apply preliminary pre-processing on text data, extract features and tokenize it.	A, An, C	1,2,3
4	Apply Parsing with Context-Free Grammars and Features and Unification	U, A	1,2,3
5	Understand and analyse the semantics and pragmatics in terms of NLP	U, An	1,2,3
6	Design and Implement Information Extraction, Machine Translation and Encoder-Decoder Models	A, S, An, E	1,2,3,8,10
*Reme Skill (S	mber (R), Understand (U), Apply (A), Analyse (A S)	An), Evaluate	(E), Create (C),

COURSE CONTENT

Content for Classroom Transaction (Sub-units)

Unit	Course description	Hours	CO No.
1	Unit I	19	1,2
2	Unit II	18	3
3	Unit III	17	4
4	Unit IV	15	5
5	Unit V	15	6

COURSE CONTENT

Content for Classroom Transaction (Sub-units)

Unit I (19 hrs)

Introduction to Natural Language Processing (NLP), History of NLP, Origin and challenges of NLP, Text Analytics and NLP, Various Steps in NLP, Regular Expressions and Automata, Text Normalization, Edit Distance Words, Words and Transducers, N-gram Language Models, Part-of-Speech Tagging, Evaluating Language Models.

AI M 21 E32 NATURAL LANGUAGE PROCESSING

Unit II (18 hrs)

Vector Semantics and Embeddings, Lexical Semantics, Vector Semantics, Words and Vectors, Cosine for measuring similarity, TF-IDF, Word2vec, Visualizing Embeddings, Semantic properties of embeddings, Evaluating Vector Models.

Unit III (17 hrs)

Formal Grammars of English, Syntactic Parsing, Statistical Parsing, Features and Unification, Language and Complexity .

Unit IV (15 hrs)

Semantics and Pragmatics- The Representation of Meaning, Computational Semantics, Lexical Semantics, Computational Lexical Semantics, Computational Discourse.

Unit V (15 hrs)

Information Extraction, Question Answering and Summarization, Dialog and Conversational Agent, Machine Translation and Encoder-Decoder Models, Sequence Modelling and Deep Learning.

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,					
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments,					
	Authentic learning: Library work and Group discussion, Presentation					
	by individual student/ Group representative					
sessment	Mode of Assessment					
Types	C. Continuous Internal Assessment (CIA)					
	• Internal Tests – Minimum Two (Extended answers /					
	Practical)					
	• Seminar–					
	 Research, Literature Review 					
	 Report Writing 					
	 Presentation 					
	• Assignment – Written, Practical, Oral Presentation					
	and Viva					
	Case study/ Mini project					
	D. Semester End Examination					

AI M 21 E32 NATURAL LANGUAGE PROCESSING

REFERENCES

- 1. Dan Jurafsky and James H. Martin, Speech and Language Processing, An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Prentice Hall series in artificial intelligence
- 2. Dwight Gunning: Sohom Ghosh, Natural Language Processing fundamentals, Packt Publishing.
- 3. Palash Goyal and Sumit Pandey, Deep Learning for Natural Language Processing: Creating Neural Networks with Python, Apress.
- 4. Steven Bird, Ewan Klein, Edward Loper, Natural Language Processing with Python Analyzing Text with the Natural Language Toolkit, O'Reilly.

Approval Date	
Version	
Approval by	
Implementation Date	

AIM 21 E33 AI IN BIOINFORMATICS

School Name	School of Artificial In	telligence	and Rob	otics		
Programme	M.Sc. Artificial Intell	M.Sc. Artificial Intelligence and Machine Learning				
Course Name	AI in Bioinformatics					
Type of Course	Elective					
AI M 21 E33	AI M 21 E33					
Names of	Dr. Ivy Prathap M.Sc.	Ph. D.				
Academic Staff &						
Qualifications						
Course	AI is transforming the	field of Bi	oinforma	tics. This co	urse disc	usses the
Summary &	fundamentals of how A	undamentals of how Artificial intelligence (AI) is applied in the field of				
Justification	bioinformatics. This in	vioinformatics. This includes Bioinformatics and Data Mining, Biological				
	Sequence Analysis and	l Ethics in	Bioinform	matics.		
Semester	III					
Total						
StudentLearning	Learning Approach	Lecture	Tutori	Practical	Others	Total
Time (SLT)			al			Learning
						Hours
	Explicit Teaching	42	14	28		
	Seminar,				36	
	Assignment,					120
	case Study etc.					
Pre-requisite	Fundamentals of Data	Mining	<u> </u>	L	1	

COURSE OUTCOMES

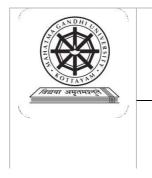
CO No.	Expected Course Outcome	Learning	PSO No.
		Domains	
1	Understand the basics of Bioinformatics	U, An	1,10
2	Analyse Biological sequence	U, A, An, S	1, 3
3	Analyse text retrieval in biomedicine	A, An	1, 2

AIM 21 E33 AI IN BIOINFORMATICS

4	Illustrate data mining in medicine	U, A, An	1, 3,9
5	Analyse Case Studies and recent research in	An, E, S	1, 2, 3,10
	application of artificial intelligence in bioinformatics		
*Remem	ber (R), Understand (U), Apply (A), Analyse (An), Eva	luate (E), Create	e (C), Skill
(S)			

Unit	Course description	Hrs	CO No.
1	Unit I	10	1
2	Unit II	24	2
3	Unit III	16	3
4	Unit IV	20	4
5	Unit V	14	5

COURSE CONTENT


Content for Classroom Transaction (Sub-units)Unit I

(10 hrs)

Introduction to Bioinformatics and Data Mining; Molecular Biology background: Analysing DNA; Bioinformatics perspective of how individuals of a species differ and how different species differ; Bioinformatics challenges and opportunities.

Unit II (24 hrs)

Biological Sequence Analysis: DNA sequence analysis; DNA databases; Protein structure and function; Protein sequence databases; Sequence alignment; Sequence comparison, Sequence

AIM 21 E33 AI IN BIOINFORMATICS

similarity search; Longest common subsequence problem; Scoring matrices for similarity search PAM, BLOSUM, etc.

Unit III (16 hrs)

Mining Biological Data: Protein structural classification; Protein structural prediction; Modelling text retrieval in biomedicine; Mining from microarray and gene expressions; Feature selection for proteomic and genomic data mining.

Unit IV (20 hrs)

Ethics in Bioinformatics: Ethical and social challenges of electronic health information; Public access to anatomic images; Evidence based medicine; Outcome measures and practice guidelines forusing data mining in medicine; Computer assisted medical and patient education.

Unit V (14 hrs)

AI in Medical Informatics: Infectious disease informatics and outbreak detection; Identification of biological Relationships from text documents; Medical expert systems; Telemedicine and tele surgery; Internet grateful med (IGM).Case Studies and recent research in application of artificial intelligence in bioinformatics.

References

- 1. S. Rastogi, N. Mendiratta and P. Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, PHI.
- 2. Z. Ghosh, B. Mallick, Bioinformatics: Principles and Applications, Oxford University Press.
- 3. J. Chen and S. Lonardi, Biological Data Mining, Chapman and Hall/CRC.
- 4. V. Buffalo, Bioinformatics Data Skills, O'Reilly Publishing.
- 5. H. Zengyou, Data Mining for Bioinformatics Applications, Woodhead Publishing.
- 6. L. Low, Bioinformatics: A Practical Handbook of Next Generation Sequencing and its
- 7. Applications, World Scientific Publishing.
- 8. M. Model, Bioinformatics Programming Using Python, O'Reilly Publishing.

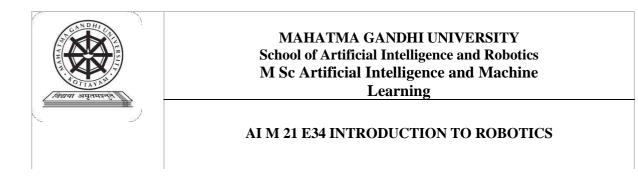
AIM 21 E33 AI IN BIOINFORMATICS

Teaching	Classroom Procedure (Mode of transaction)				
and	Direct Instruction: Brain storming lecture, Explicit Teaching, E-				
Learning	learning, Interactive Instruction: Active co-operative learning,				
Approach	Seminar, Group Assignments,				
	Authentic learning: Library work and Group discussion,				
	Presentation by individual student/ Group representative				
Assessment	Assessment Mode of Assessment				
Types	E. Continuous Internal Assessment(CIA)				
	• Internal Tests – Minimum Two (Extended answers / Practical)				
	• Seminar–				
	 Research Literature Review 				
	 Report Writing 				
	 Presentation 				
	• Assignment – Written, Practical, Oral Presentation and Viva				
	Case study/ Mini project				
	F. Semester End Examination				

AI M 21 E34 INTRODUCTION TO ROBOTICS

School Name	School of Artificial	l Intellige	ence and R	obotics		
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Introduction to Rob	otics				
Type of Course	Elective					
• •						
Course Code	AI M 21 E34					
Names of	Dr. Sharon Susan J	acob,				
Academic Staff	M.Tech, Ph.D.					
&Qualifications						
Course	The purpose of this course is to introduce the basics of modelling, design,					
Summary	planning, and control of robot systems. This course provides an overview					
&Justificati	of robot mechanisms, dynamics, and intelligent controls. Topics include					
on	planar and spatial kinematics, trajectory generation, robot sensors and					
	applications.					
Semester	III					
Total Student						
Learning Time	Learning	Lectur	Tutorial	Practica	Other	Total
(SLT)	Approach	e		1	s	Learning
						Hours
	Explicit Teaching	42	14	28		
						120
	Seminar,				36	
	Assignments, etc.					
Pre-requisite	Need a very strong	backgrou	und in Line	ear Algebr	a and go	od knowledge
	in Physics as a back	0		0		
	expert in coding lar	nguages f	for Robotic	cs such as I	Python, (C++, etc.

AI M 21 E34 INTRODUCTION TO ROBOTICS


COURSEOUTCOMES(CO)

Expected Course Outcome	Learning	PSO No.
	Domains	
To understand the functions of the basic components of a	U, R	1
Robot.		
To impart knowledge in Robot Kinematics	U, An	1,9
and Programming.		
To familiarize students with robot classifications and	U, R	1,3
configurations.		
To acquaint the students with Trajectory planning,	U, S	1,2
dynamic modelling, control and applications of robots		
Formulate the mathematical relations for forward and	U, E, S, A	1,2,3
inverse kinematic analysis and trajectory generation of		
robotic manipulator.		
To study the use of various types of Sensors.	U, R, An	1,3
To learn Robot safety issues and economics.	R, U	1,3,10
	 To understand the functions of the basic components of a Robot. To impart knowledge in Robot Kinematics and Programming. To familiarize students with robot classifications and configurations. To acquaint the students with Trajectory planning, dynamic modelling, control and applications of robots Formulate the mathematical relations for forward and inverse kinematic analysis and trajectory generation of robotic manipulator. To study the use of various types of Sensors. 	DomainsTo understand the functions of the basic components of a Robot.U, RTo impart knowledge in Robot Kinematics and Programming.U, AnTo familiarize students with robot classifications and configurations.U, RTo acquaint the students with Trajectory planning, dynamic modelling, control and applications of robotsU, SFormulate the mathematical relations for forward and inverse kinematic analysis and trajectory generation of robotic manipulator.U, E, S, ATo study the use of various types of Sensors.U, R, An

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit 1	14	1,3
2	Unit 2	18	2

3	Unit 3	17	4,5
4	Unit 4	19	6
5	Unit 5	16	7

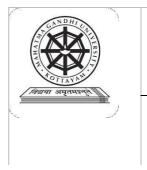
COURSE CONTENT

Content for Classroom Transaction

Unit I (14 hrs)

Introduction to Robotics – Definitions, Robot anatomy, Robot Elements - links, joints, end effector, actuators, sensors, hydraulic, pneumatic, electric drive systems, Robot specifications, Work envelope of different robots, Classification of Robots, Robot coordination systems, Need for Robots, Different applications.

Unit II (18hrs)


Robot Kinematics: Kinematic parameters, Basics of direct and inverse kinematics, Robot trajectories, 2D and 3D Transformation-Scaling, Rotation, Translation Homogeneous transformation. Jacobians, Velocity and Forces-Manipulator Dynamics, Trajectory Generator, Manipulator Mechanism Design-Derivations and problems.

Unit III (17hrs)

Trajectory Generation: General consideration in path description and generation, joint space schemes, collision free path planning, Robot programming.

Unit IV (19 hrs)

Robot Sensors: Sensors in Robotics – Touch sensors, Tactile sensors, Proximity and range sensors, Force and Torque sensors. Robot vision - Image representation, Perspective and inverse perspective Transformations.

AI M 21 E34 INTRODUCTION TO ROBOTICS

Unit V (16hrs)

Robot Applications: Industrial applications of robots, Medical, Household, Entertainment, Space, Underwater, Defense, Disaster management. Applications, Micro and Nanorobots, Future Applications, Introduction to robot arm dynamics, introduction to mobile robots

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	Direct Instruction: Brainstorming lecture, Explicit Teaching, E- learning,					
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group					
	Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					
Assessment	Mode of Assessment					
Types	G. Continuous Internal Assessment (CIA)					
	• Internal Tests–Minimum two (Extended answers/Practical)					
	• Seminar –					
	 Research Literature review 					
	 Report writing 					
	 Presentation 					
	• Assignments–Written, Practical, Oral presentation and viva					
	Case study /Mini project					
	H. Semester End Examination					

REFERENCES

- 1. Richard D. Klafter, Thomas A Chmielewski and Michael Negin, Robotics Engineering: An integrated approach, Prentice Hall
- 2. Mikell P. Groover, Mitchell Weiss, Roger N Nagel, Nicholas G Odrey, "Industrial Robotics Technology, Programming and Applications", Tata –McGraw Hill Pub. Co., 2008.
- 3. Fu.K.S, Gonzalez.R.C&Lee.C.S.G, "Robotics control, sensing, vision and intelligence", Tata- McGraw Hill Pub. Co., 2008
- 4. Introduction to Robotics (Mechanics and control), John. J. Craig, Pearson Education

AI M 21 E34 INTRODUCTION TO ROBOTICS

Asia 2002.

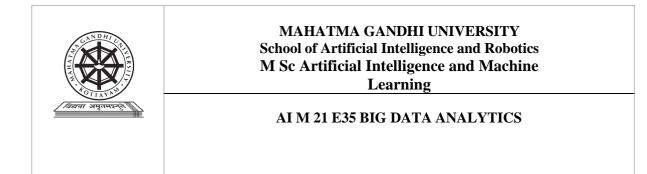
5. R K Mittal and I J Nagrath, "Robotics and Control", Tata McGraw Hill, New Delhi,2003.

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E35 BIG DATA ANALYTICS

School Name	School of Artificial	Intellige	ence and R	obotics			
Programme	M.Sc. Artificial Intelligence and Machine Learning						
Course Name	Big Data Analytics						
Type of Course	Elective						
Course Code	AI M 21 E35	AI M 21 E35					
Names of	Dr. Sharon Susan J	acob,					
Academic Staff	M.Tech, Ph.D.						
&Qualifications							
Course	The course enables	he stude	nts to unde	rstand Big	Data pro	cessing used in	
Summary	different business	intelliger	nce applic	ations an	d provid	le an in-depth	
&Justificati	coverage of MapRe	duce ana	alytics usir	ng Hadoop	Eco sys	stem tools. The	
on	student will gain pr	ogrammi	ng knowle	dge in Pig	g, Hive, S	Spark to handle	
	the Big Data applic	ations a	nd they w	ill get exp	osure in	blooming Big	
	Data technologies.						
Semester	III						
Total Student							
Learning Time	Learning	Lectur	Tutorial	Practica	Other	Total	
(SLT)	Approach	e		1	S	Learning	
						Hours	
	Explicit Teaching	42	14	28			
						120	
	Seminar,				36	120	
	Assignments, etc.						
Pre-requisite	Thorough knowled thinking skills	Thorough knowledge in SQL. Also need presentation and critical					

COURSEOUTCOMES(CO)


СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Learn the challenges and their solutions in Big Data.	U, R	1,10

PERPER SPECTRUS		MAHATMA GANDHI UNI School of Artificial Intelligence M Sc Artificial Intelligence a Learning AI M 21 E35 BIG DATA AN	and Robotics and Machine	
2	Understand and eco sys	and work on Hadoop Framework	U, An, S	1,2
3	Explain an	Explain and Analyse the Big Data using Map-reduce programming in Both Hadoop and Spark framework.		1,3
4		Demonstrate Hive and Pig.		1,2
5	Demonstra	Demonstrate Spark programming.		1,2
6	Installation	Installation of Hadoop Architecture and its ecosystems		1,2
7	Access and Process Data on Distributed File System		A, S, E	1,3
*Ren (S)	nember(R),Un	derstand(U),Apply(A),Analyse(An),Evaluate	e(E),Create(C)),Skill

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	12	1,2
2	Unit II	12	7
3	Unit III	16	3
4	Unit IV	20	4
5	Unit V	20	5

COUIRSE CONTENT

Content for Classroom Transaction

Unit I (12 hrs)

Introduction to Big Data – Introduction to Data Analytics, Type of Data Analytics – Descriptive, Predicative, Prescriptive, definition & importance of Big Data - four dimensions of Big Data - volume, velocity, variety, veracity – industry examples – terminologies – structured data, unstructured data, semi structured data, streaming data, real-time data, meta data, data at rest – Big Data Analytics in Industry Verticals.

UNIT II (12 hrs)

Relational databases and SQL – Non-Relational databases NoSQL Data model: Aggregate Models-Document Data Model- Key-Value Data Model, Columnar Data Model, Graph Based Data Model, NoSQL system ways to handle big data problems

Unit III (16 hrs)

Hadoop Ecosystem - Core components-Hadoop Distributions-Developing enterprise applications. HDFS - HDFS Architecture-Applicability of HDFS-Using HDFS files-Hadoop specific file types -HDFS federation and high availability. HBase-High Level HBase Architecture-HBase schema design-New HBase Features-Managing metadata with HCATALOG.

Unit IV (20hrs)

Hive-Features - Hive architecture – Datatypes and file formats –primitive and collection datatypes – HiveQL–databases in Hive – Creating, Altering, Partitioning and managing tables**Pig-**Features and uses- Comparison with Map-Reduce-Execution modes-Pig Latin commands- Developing Pig script-Joining Data sets- Join,Cogroup concepts- User Defined Functions-Controlling Execution-Pig Latin Preprocessor.

Unit V (20hrs)

Oozie-Functional Components-Oozie Job Execution Model-Scheduling workflow using Oozie coordinator-Oozie coordinator components and variables-Oozie coordinator lifecycle operation. **Spark-**Spark Architecture-Spark Streaming-Streaming Operator-Spark SQL-ResilientDistribution Dataset (RDD).

AI M 21 E35 BIG DATA ANALYTICS

Teaching and	Classroom Procedure (Mode of transaction)					
Learning	DirectInstruction:Brainstorminglecture,ExplicitTeaching,E-					
Approach	learning, Interactive Instruction: Active co-operative learning, Seminar,					
	Group Assignments					
	Authentic learning: Library work and Group discussion, Presentation by					
	individual student/Group representative.					
Assessment	Mode of Assessment					
Types	I. Continuous Internal Assessment(CIA)					
	• Internal Tests–Minimum two(Extended answers/Practical)					
	• Seminar –					
	 Research, Literature review 					
	 Report writing 					
	 Presentation 					
	• Assignments–Written, Practical, Oral presentation and viva					
	Casestudy/Miniproject					
	J. Semester End Examination					

REFERENCES

- 1. Michael Minelli, Michele Chambers and, Ambiga Dhiraj, Big Data, Big Analytics:Emerging Business Intelligence and Analytic Trends for Today's Businesses.
- 2. Noreen Burlingame, Little Book of Big Data, Ed. 2012
- 3. Tom White, Hadoop, The definitive guide, O'Reilly Media, 2010

Approval Date	
Version	
Approval by	
Implementation Date	

AI M 21 E36 CLOUD COMPUTING

School Name	School of Artificial Intelligence & Robotics							
Programme	M.Sc. Artificial Intelligence and Machine Learning							
Course Name	Cloud Computing							
Type of Course	Elective							
Course Code	AI M 21 E36	AI M 21 E36						
Names of	Dr. Abdul Jabł	oar P, M.P	hil., Ph.D.					
Academic Staff								
& Qualifications								
Course	This course wi			*	-	0		
Summary &	fundamentals,	0		•	U			
Justification	trends. The cou		_	_				
	security, testin	0		U		-		
	students to use	e and expl	ore the clo	ud computi	ng platform	8.		
Semester	III							
Total								
StudentLearning	Learning	Tation	m 11					
Time (SLT)	Learning	Lecture	Tutorial	Practical	Others	Total		
	Approach	Lecture	Tutorial	Practical	Others	Total Learning		
	e	Lecture	Tutorial	Practical	Others			
	e	Lecture	Tutorial	Practical	Others	Learning		
	Approach	42	Tutorial	Practical 28	Others	Learning Hours		
	Approach Explicit Teaching				Others	Learning		
	Approach Explicit Teaching Seminar,					Learning Hours		
	Approach Explicit Teaching Seminar, Assignments				Others 36	Learning Hours		
	Approach Explicit Teaching Seminar,					Learning Hours		
Pre-requisite	Approach Explicit Teaching Seminar, Assignments	42	14	28	36	Learning Hours 120		

COURSE OUTCOMES (CO)

CO	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Familiarise the fundamentals of cloud computing	R, U	1,2
	environment.		
2	Understand, analyse and evaluate various cloud	U, A,An,S,	1,2.3
	computing models and services.	Е	

AI M 21 E36 CLOUD COMPUTING

3	Analyse and evaluate various cloud security issues.	A,S, E	1,2,3
4	Test and evaluate cloud computing services to ensure quality.	A,C,An,E	1,2,3,6,7
5	Formulate and evaluate security threats and issues in cloud environment	A,S,C,E	1,3,4,6
6	Demonstrate, analyze, design, apply and use cloud infrastructure to manage data	U,An,R,A	1,2,3,6,7, 8,9,10
*Rem (S)	nember (R), Understand (U), Apply (A), Analyse (An), Eva	luate (E), Crea	te (C), Skill

COURSE CONTENT

Content for Classroom Transaction

Unit	Course description	Hrs	CO No.
1	Unit I	15	1,6
2	Unit II	20	2,6
3	Unit III	15	3,6
4	Unit IV	20	4,6
5	Unit V	14	5,6

COURSE CONTENT

Content for Classroom TransactionUnit

Unit I (15 hrs)

Cloud computing, History of Cloud Computing, Cloud service providers, Properties, Characteristics - Benefits of Cloud Computing- Cloud Storage- Cloud computing vs. Cluster computing vs. Grid Computing-Role of Open Standards- Companies in the Cloud Today.

AI M 21 E36 CLOUD COMPUTING

Unit II (20 hrs)

Web-Based Application, Pros and Cons of Cloud Service Development, The NIST model, Cloud Delivery Models- SaaS, Paas, Iaas, Cloud deployment models- Private cloud, public cloud, community cloud, hybrid cloud, Alternative Deployment Models- The Linthicum Model, The Jericho Cloud Cube Model.

Unit III (15 hrs)

Security objectives, Services, Security design principles, secure development practice, Approaches to Cloud Software Requirements Engineering.

Unit IV (20 hrs)

Secure Cloud Software Testing, Testing for SQA, Conformance, functional, Performance & security testing.

Unit V (14 hrs)

Threats to Infrastructure, Data and Access Control, Cloud Service Provider Risks- Back- Door, Spoofing, Man-in-the-Middle, replay threats, TCP Hijacking, Social Engineering, Dumpster Diving, Password Guessing, Trojan Horses and Malware.

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Direct Instruction: Explicit Teaching, E-learning		
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group		
	Assignments		
	Authentic learning: Library work and Group discussion, Presentation by		
	individual student/Group representative.		
Assessment	Mode of Assessment		
Types	A. Continuous Internal Assessment (CIA)		
	• Internal Tests – Minimum two (Extended answers)		
	• Seminar –		
	 Research Literature review 		
	 Report writing 		
	 Presentation 		
	• Assignments – Written, Oral presentation and viva.		
	• Case study		
	B. Semester End Examination		

AI M 21 E36 CLOUD COMPUTING

REFERENCES

- 1. Toby Velte, Anthony Velte, Robert Elsenpeter, "Cloud Computing, A PracticalApproach", TMH.
- 2. Ronald L. Krutz, Russell Dean Vines, "Cloud Security A comprehensive Guide to Secure Cloud Computing", Wiley India.
- 3. M.N Rao, Cloud Computing, First Edition, PHI, 2014
- 4. Das Gupta, Cloud Computing Based Projects using distributed Architecture, PHI,2014.
- 5. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 6. Michael Miller, Cloud Computing: Web-Based Applications That Change the Way You Work and Collaborate Online, Que Publishing.

Approval Date	
Version	
Approval by	
Implementation Date	

AIM 21 C36 COMPUTER VISION AND DATA ANALYTICS LAB

			1.5.1			
School Name	School of Artificial Intelligence and Robotics					
Programme	M.Sc. Artificial Intelligence and Machine Learning					
Course Name	Computer Vision and	d Data Ana	alytics Lab)		
Type of Course	Core	Core				
Course Code	AIM 21 C36					
Names of	Prof. Dr. Bindu V R,	Prof. Dr. Bindu V R, M. Sc., Ph. D.				
Academic Staff						
& Qualifications						
Course	Computer vision and Data analytics lab provides solid understanding of					
Summary &	computer vision problems and its implementation and also provides					
Justification	guidance with all aspects of quantitative and qualitative data collection, analysis, and interpretation.					
Semester	III					
Total Student						
Learning Time	Learning Approach	Lecture	Tutori	Practi	Others	Total
(SLT)			al	cal		Learning Hours
	Explicit Teaching					
	Seminar, Assignment, case Study etc.					120
Pre-requisite	Good knowledge in Image processing and Data analytics					

COURSE OUTCOMES

СО	Expected Course Outcome	Learning	PSO No.
No.		Domains	
1	Design and implement the computer vision	An, A, E,	1,2
	problems and visualization solutions	C, S	
2	Solid understanding of computer vision libraries. Design and implement the deep learning algorithms for computer vision	U, A, An, S, C, E	1,2

AIM 21 C36 COMPUTER VISION AND DATA ANALYTICS LAB

	problems		
3	Implement numerical and statistical analysis on		1,2,3
-	various data sources.	A, An	_,_,_
4	Apply data pre-processing and dimensionality reduction methods on raw data.	A, S	1,2
5	Use machine learning techniques in high- performance computing environment to solve real-world problems.	An, A, S	1,2,3,10
6	Describe various concepts of Bigdata.	U, R, An	1,3

COURSE CONTENT

Part I

Build an image processing algorithm from scratch. Apply deep learning techniques to solve computer vision problems by implementing and testing relevant learning algorithms. Familiarization of computer vision libraries - OpenCV, Tensorflow, Keras, Caffe, pytorch, PCL,Deepface etc., Implementation of YOLO algorithm, feature extraction and descriptors approaches, 3 D reconstruction, variants of convolutional and recurrent neural networks and Case Studies.

Part II

A comprehensive and interdisciplinary introduction to data analytics using modern computing systems, with equal attention to fundamentals and practical aspects. Data Science curriculum is designed in a way to help students gather knowledge in the field of business, besides applying the tools and statistics to meet organizational challenges in the near future. The DataScience course syllabus comprises three main components, i.e., Big Data, Machine Learning and Modelling in Data Science.

AIM 21 C36 COMPUTER VISION AND DATA ANALYTICS LAB

Teaching and	Classroom Procedure (Mode of transaction)		
Learning	Direct Instruction: Brain storming lecture, Explicit Teaching, E-learning,		
Approach	Interactive Instruction: Active co-operative learning, Seminar, Group		
	Assignments,		
	Authentic learning: Library work and Group discussion, Presentation		
	by individual student/ Group representative		
Assessment	Mode of Assessment		
Types	C. Continuous Internal Assessment(CIA)		
	• Internal Tests – Minimum Two (Extended answers		
	/ Practical)		
	• Seminar-		
	 Research, Literature Review 		
	 Report Writing 		
	 Presentation 		
	• Assignment – Written, Practical, Oral Presentation		
	and Viva		
	Case study/ Mini project		
	D. Semester End Examination		

REFERENCES

- 1. Forsyth, J. Ponce, Computer Vision: A Modern Approach, Pearson Education.
- **2.** J. Solem, Programming Computer Vision with Python: Tools and Algorithms for AnalyzingImages.
- **3.** M. Nixon and A. Aquado, Feature Extraction & Image Processing for Computer Vision, 3rd Edition, Academic Press.
- 4. R. Jain, R. Kasturi, B. Schunck, Machine Vision, Indo American Books.
- 5. R. Szeliski, Computer Vision: Algorithms and Applications, Springer.
- 6. S. Prince, Computer Vision: Models, Learning, and Inference, Cambridge University Press.
- 7. Gaurav Aroraa, Chitra Lele, Dr. Munish Jindal, Data Analytics:Principles, Tools, and Practices: A Complete Guide for Advanced Data Analytics Using the Latest Trends, Tools, and Technologies (English Edition)
- 8. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer

AIM 21 C36 COMPUTER VISION AND DATA ANALYTICS LAB

Approval Date	
Version	
Approval by	
Implementation Date	